生物の部屋

人生すべて学習の対象だ

                         管理人の所在地;埼玉県志木市館志木ニュータウン内 ;      © 2017 Studio Rabotati All Right reserved

生物の世界

バッタを倒しにアフリカへ バイオエアロゾルとは 藻類とは クジラの進化
海のプランクトン 人の細胞 ルイセンコ学説 キツネがペットになる日
シアノバクテリア ミトコンドリア ネコ科動物の進化
脊椎動物 前口動物と後口動物 多細胞生物 襟鞭毛虫
眼の起源
ベリャーエフ キャメル・ロード 白雪姫と7人の小人達 「カッコウの森」

バッタを倒しにアフリカへ

バッタ博士がバッタの論文を書くため単身アフリカへ。そこでは壮絶な世界が待ち受けていたが、3年後には人間的も大成長を遂げ押しも押されぬ虫博士としての地位を獲得する成功物語。ノンフィクション科学冒険談で著者・前野ウルド浩太郎さん自身の体験談。
まず、先ずは前野博士が単身アフリカに渡るキッカケから。日本では大学院で博士号を取得したのち数年間、自分で職を見つけて働く口を探さねばならない。昔なら大学院を卒業後、大学の助手になる道もあったが、現在では博士の数が多くなり、国の研究機関や大学には収まりきれない。一般の企業では、博士の需要は学問分野にもよるだろうがそんなに多くないので、一般の企業に入ることは学問への道をあきらめることに通じる。このことは「ポスドク」問題として知られているようだ。欧米諸国では、博士たちを有効に活用する社会システムが整っているが、日本は、その面で大幅に遅れているようだ。
前野博士は、子供時代に読んだ「ファーブルの昆虫記」にあこがれ虫一筋に研究してきた人。アフリカ行を決心したのもユニークな論文を書き就職の審査に通ること。ここで論文が書けなければ研究者への道を断念しないといけないと決死の覚悟のアフリカ行き。
サバクトビバッタ ところで博士の研究テーマは、昆虫の中のバッタ、そのバッタの中でも「サバクトビバッタ」。ほとんどこれ一筋。このバッタは古代から「神の罰」と言われるほど恐れられており、数年に一度大発生して農作物から草木の葉までおよそ緑のものをことごとく食い尽くす恐ろしい代物(しろもの)です。蝗害(こうがい)という言葉もあり、中国にもあったのか。このバッタは2つの形態を持ち、常時は孤独相という形で比較的おとなしく棲息しているのに、密生して発生すると群生相言う形態に変化する。はじめはこの二つは全く別の種と思われていたのだが、1921年ロシアの昆虫学者が、棲息密度が混み合うと相変異することを突き止めたという。左の写真では、上が孤独相で保護色の緑色をしているが下は黒っぽい色になっている。本来は同じ種のバッタだ。
因みに、バッタとイナゴは相変異(そうへんい)するか否かで区別するのが国際的ルールらしい。相変異するのがバッタ(Locust)、しないのがイナゴ(Grasshopper)だそうだ。となると、日本のショウリョウバッタ、オンブバッタなどは相変異しないのでイナゴの仲間となる。サバクトビバッタの研究は、日本ではあまり知られていないが、ヨーロッパ諸国では相当な研究がおこなわれている。しかし、ほとんどは室内研究で現地調査はあまり行われていないらしいということが着目点。しかし、それでだけ困難もあるというわけ。
そこで博士が選んだ国、サハラ砂漠の最西端の国モーリタニア。英語の通じない国で、公用語のアラビア語もフランス語も分からないまま入国する。当然失敗の連続、また、期待したバッタの大発生も無い(コンなこと期待してはいけないね)。とうとう準備した資金も枯渇した時に、自分自身を相変異をすることを決める。論文を一時棚上げし、広報活動を始めるのだ。国内のサポーターに広くアピールする。子供たちはもちろん大人でもバッタが大好きな人沢山いるんですね。これが大成功し、なんとか研究を続けることができ、日本での研究者の地位も確保する。でも、ここまで来るまでに本当に沢山の人々の支援があったんですね。特に、最後まで暖かく支援を惜しまなかった、モーリタニア国の研究所ババ所長さんの功績は感動ものです。ウルドの称号はババ所長が前野氏が現地で活動しやすいように与えたものだそうです。バッタの駆除は、日本の外務省もモーリタニア国との外交上の重要テーマと認めてくれたようです。さらなる前進が期待出来ますね。
【バッタを倒しにアフリカへ;前野ウルド浩太郎著、光文社新書】
ショウリョウバッタ オンブバッタオンブバッタ

【追記1】
専門家というものどうしても視野が狭くなりがち、研究者というものだって社会の一員としてやっている以上、自分の研究を社会に役立ててもらわないと存在価値がない。出世競争だけに目がくらむと何処かで行き詰る。前野博士も自らの相変異を見事に成し遂げ、日本を代表する立派な学者に成長したですね。相変異をした後のこれを支えてくれた人たちの活躍も大したもの。でも、研究の目的はトビバッタの大発生の仕組みの研究、なんとか食い止めたい現地の人々の心と裏腹に、大発生を心待ちしているのは頂けない気もしますね。
【追記2】
相変異があるのはバッタだけだろうか。進化の歴史の中の秘密として他の生物、もちろん人間も含めて組込まれているのでは無いか。人の心にも「個人相」と「大衆相」があるぞ。個人相の時の人間は、個性を互いに尊重し、自由を愛し、色々なことを自分の頭で理解しようとするが、大衆相の人間は「一致団結」とか「一億〇〇」等の威勢の良い掛け声や、国やマスコミの強いリーダーシップを求め、自分の頭で考えることを嫌い他人の出来合いの意見を尊重し、社会の他の構成員にもそれを強要する(本当は自分が洗脳されていることに気がつかない)ようになる。経済が停滞し、社会が不安なるとファシズム(集団主義)が台頭してくるのは、こうした理由がありそうだ。人の場合「大衆相」は、往々にして自滅への道を取ることが多いので、気を付けて社会を観察してください。

地球の歴史・生命の歴史
scienceの部屋---はじめに
生物の世界

藻類とは

藻類(そうるい)
みなさんは「藻(も)」と聞くと何を想像しますか? 川底で揺れる川藻のたぐい、あるいは水槽に入れる小さな水藻かもしれません。しかし、藻の仲間は私たちが想像する以上に多彩です。単細胞のクロレラみたいな小さいものも、昆布やワカメみたいな大きな海藻もも全部藻類です。
生物系統樹 つまり、藻類とは光合成をする生物からコケ植物、シダ植物、種子植物(裸子植物、被子植物)を除いた生物全部。つまり、分類学から言えばその他大勢。だから、藻類という言葉の中には極めて多種多様な生き物が含まれていた訳です。
昔は生物と言えば、動物と植物との2分法。動物は自分で動き回り(動けないものもいるのに)従属栄養で、植物は光合成を行う独立栄養だ。でも、遺伝子解析が進み系統分類法が整理されてくると、全く異なった生物の進化系統が見えてきました。今小学校では、キノコなどの菌類は動物でも植物でもない全く別のグループとされています。そのうち藻類も植物ではないと、仲間外れになりそうです。それじゃーあんたは何なのさ?
最近注目されている、「ミドリムシ(ユーグレナ)」は、緑色の色素を持ち光合成を行うのに、2本の鞭毛をもって泳ぎ回る。「あなたは一体動物なの植物なの。」、実際は、今まで想定されていた動物でも植物で菌類でもない。最近の系統図を見て下さい。
生物系統樹 この図で気がつくのは、動物も陸上植物も菌類も多種多様な生物の中のほんの一部です。残りの大部分がいわゆる「藻類」ということでしょう。大型の海藻や淡水藻を除けば大部分は単細胞生物です。
ここでもう一度、生物の進化を復習して見ましょう。地球上で最初に現れるのが古細菌の仲間。その後真正細菌が登場し、その中で藍藻(シアノバクテリア)が酸素放出する型の光合成を開始します。酸素は当時の他の生命にとっては猛烈に有毒。古細菌の一部は、真正細菌を自分の体の中に取り込むことで共生を図ります。このようにして真核生物が誕生したと言われています。でも、真核生物も単細胞の方が多いんです。この合体の仕方は色々な方法が試行錯誤されたようで、その結果多種多様な生物が存在しているようです。

地球の歴史・生命の歴史
scienceの部屋---はじめに
生物の世界

バイオエアロゾルとは

エアロゾルとは大気中に漂う微粒子のこと。一般にはこれら微小な砂粒のような鉱物粒子のように考えられてきたが、実際にはこれらの微粒子にはカビや菌類の胞子など生命由来のものも多く含まれているという。地球の生命は地上や海水中だけでなく、大深度の地下や超深海等今までの想定を超えて広がっていることが分かってきている。大気中にも色々な微生物が存在しており、地球環境にも多大な影響を与えている可能性があるというので驚きだ。
地上に降る雨は、上空で微小なエアロゾルを核として水滴や氷の粒を形成して雲を造り、これが雨や雪を降らす基となっていることは分かっている。しかし、雲ができる詳細なメカニズムはまだ解明されていないのだそうだ。以下の話はNHKのサイエンスZEROで紹介された話。こういうまじめな研究にはもっと注目が集まってもいいと思うのですが。
【世界屈指の空飛ぶ微生物ハンター】
冒頭の画面。6月末。梅雨時のジメジメした森の中に、その研究者はいた。落ち葉の中から見つけた小さなキノコをつまむと、茶色い粉が吹き出した。「これや!バイオエアロゾルや!」。お目当ては、きのこそのものではなく、吹き出す粉、胞子。「キノコの胞子が空に浮かび、雨を降らしているかもしれないんです。」
胞子を見ながらうれしそうにそう説明してくれたのは、金沢大学の牧輝弥さん。キノコの胞子のような、微生物の研究を行っている。この研究が将来天気予報にも大いに活躍するかもしれないのだ。バイオエアロゾルとは、空気中を漂う微生物やその死骸、体の一部など、生き物に由来する小さな粒子のこと。特に胞子と呼ばれる微小粒子が大きな役割を持っているようだ。
サンプルテスト 金沢大学の研究室を訪ねると、薄暗い部屋の片隅にあった大量の容器を見せてくれた。中には、黒や白、ピンク色の綿のようなものが。これらはすべて、牧さんが空気中から採取したバイオエアロゾル。カビやキノコの胞子などの真菌や、バクテリアといった、微生物だ。
もともと水中の微生物で、環境や健康への影響を調べていた牧さん。バイオエアロゾルとの出会いは、10年前におこなった黄砂の観測。「栄養が少なく、微生物はほとんどいないとされていた上空でとった黄砂の砂粒に、微生物がいたんです。それが衝撃的で、不思議で、調べてみたいと思いました。」。以来、気球やヘリコプターまで使って、400種類以上ものバイオエアロゾルを集めてきた牧さんは、世界屈指の「空の微生物学者」だ。牧さんがとらえた微生物の中には、なんと納豆菌も。地元の業者と協力して、実際に納豆を作り販売もしているというから驚きだ。上空3000mで取った菌で作ったからか、空のようにさわやかで、クセのない味になり、好評だとか。「さわやか納豆」ですか、売れるかもね。
最近、アフリカのサハラ砂漠から地球を半周して飛んでくる砂塵がアマゾンの熱帯雨林の栄養になっているなんて言う研究もあるようだ。

しかし、空に漂う微生物が、天気とどんな関係があるのだろうか。なぜ雨が降るのか-身近な雲のナゾ解明に一歩前進!?私たちは、牧さんの実験を見せてもらうことにした。牧さんが持ってきたのは、バイオエアロゾルを入れた液体。これを、冷却装置で少しずつ冷やしながら、凍るのを観察するという。「-4℃から始めよう...-5℃、-6℃...-8℃。だめか」。気にしているのは、凍る温度。これこそが、天気との関係を示す手がかりだ。私たちの頭の上に浮かぶ雲。あの雲が、どうやってできるのか。実はその問いには、科学者たちもまだ完全には答えられない。そもそも、白く見えている雲は、水蒸気が集まった「水の粒」と「氷の粒」の集まり。これらに重要なのが、バイオエアロゾルのような空気に浮かぶ微粒子だ。微粒子のまわりに水蒸気が集まり氷になると、蒸発しにくくなり粒として存在できるようになるからだ。つまり、均一な空気で微粒子がなければ雲が生成されず、雨が降らないということだ。
【犯人を絞り込め】
雲のできる高さ しかし、この雲の粒を作る微粒子には、大きなナゾがある。砂の粒など無機物の微粒子は、-15℃という低温で、氷の粒を作ることがわかっている。ところが、空気の温度が-15℃よりも高い場所でも、雲は発生しているのだ。-15℃の気温はかなり上空だけど、実際の雨雲はもっと高温の低いところで発生している。ではいったい、鉱物よりも高い温度で凍り、雨を降らせる雲の粒になっているのはいったい何なのか。その候補となっているのが、バイオエアロゾルだ。地上では、すでにおよそ-5℃で凍る微生物が見つかっている。牧さんは、空にもそうした、-15℃よりも高い温度で凍る微生物がいるはずで、それこそが雲を作り、雨を降らせていると考えている。もしこれが突き止められれば、気象予測をより正確にするために必要な、雲のメカニズムが解き明かせることになる。
今回の実験では、幸運にも、牧さんも驚きの発見に立ち会うことができた。「うわ、もう凍り始めた!こいつ、ホンモノですよ」冷却装置の示す温度は、なんと-7℃。能登半島の上空3000mで採取したものだった。その後、温度や湿度などを、より空の環境に近い状態にして再度実験。それでもやはり、-15℃よりも高い温度が示された。「もしかしたらこれが、上空で雲を作るのに働いていたかもしれないです」。雨を降らすバイオエアロゾルの候補の手がかりをつかんだ牧さん。さらに詳しい正体を、DNAから調べていく予定だ。
【不思議な"糸"が示す バイオエアロゾルの発生源】
牧さんは並行して、バイオエアロゾルがどこから来るのか、明らかにしようとしている。雨を降らせるバイオエアロゾルが、どこから来て、どこにどのくらい飛んでいくのか分かれば、どこに雨が降るのか、どのくらい降るのか、予測が可能になるかもしれないからだ。
茨城県の筑波実験植物園で行われた調査に同行した。今回、バイオエアロゾルの採取を行ったのは、森林内の地上付近と、そこに面した、上空約20mの建物の屋上、そしてヘリで向かった、森の上空500m。3つの高度でとれたバイオエアロゾルに、手がかりがないか探そうというものだ。3日間にわたる調査で採取したサンプルを、顕微鏡で観察した牧さん。ここでも驚きの、新たな発見があった。「なんじゃこりゃ。こんなもんとれてますよ。いままで見たことないやつが」
菌糸 そこに映っていたのは、小さな青白い粒から出た、細長い糸のようなもの。菌の体の一部、菌糸だ。上空500mのサンプルで見つけた菌糸。なんと、上空約20m、そして地上でも、似た形の菌糸が取れていた。「森の中の、菌糸を伸ばした微生物が飛んでいるんです。確実ですよ」。3つの高さで同じ種類と思われる微生物が見つかったということ、それは地上から、少なくとも上空500mまでは、空に向かって微生物が飛んでいる可能性があるということだ。
今回、「雲となり雨を降らせるバイオエアロゾル」、「バイオエアロゾルの発生源」、この二つを明らかにする大きな手がかりを見つけた牧さん。これからおこなわれるという、より詳しい分析で、さらに雨を降らせるバイオエアロゾルの正体に近づけると考えている。 「あまたいる微生物の、ほんの一部分を調べたに過ぎません。きっと世界にもまれに見る成果が上がってくると信じています。」
微生物学者の、気象の謎への挑戦はまだまだ続く。牧さんの研究が、私たちの生活を変える日が来るのが楽しみだ。
なお、森の中の微生物は、森の中の薄暗く湿った環境が大好きだ。菌糸を飛ばせて雨を降らせることで森の環境を向上させ子孫の繁栄を図っているとしたら。生命の環境への適応力は大変なものだ。地球の歴史を見れば分かる通り、生命は環境に適応するだけでなく環境を作り変える役割も果たしているのです。

scienceの部屋---はじめに
生物の世界

クジラの進化

クジラは変わった哺乳類だ。昔は、魚の仲間としていた人たちも多かったようだ。でも、古代ギリシャのアリストテレスはその著書『動物の発生』の中で、クジラ類は鰓呼吸ではなく空気呼吸(潮吹き)をすること、クジラ類は胎生であり授乳をすることなどから、人類や陸上哺乳類とともにクジラ類を胎生動物(現在の哺乳類に相当)という分類群にチャンと収めている。
哺乳類のご先祖は、古生代に一部の魚が陸上に進出して、両生類、爬虫類と進化して、陸上に適応して来たのに、クジラ類は4足歩行する哺乳類を先祖として、淡水の浅瀬から深海へと全く逆の進化をして、海の生態系の頂点に登りついたわけだ。しかし、クジラ類の起源と進化史は哺乳類進化史上の大きな謎とされてきて、最近ようやくその進化の道筋が分かりかけてきたらしい。
菌糸 6500万年前に、恐竜を始め、海の生物たちも大絶滅。インド亜大陸がユーラシア大陸に衝突する少し前、その間にはテチス海という海があった。1980年代以降、その周辺の地域(パキスタン等)からさまざまな進化段階のクジラ類の化石が見つかり、初期のクジラ類の進化史が解明されたということらしい。その結果、クジラ類の祖先は陸生の原始的な”偶蹄類”であること、クジラ類に最も近縁な陸上哺乳類はカバであること、分岐分類学ではクジラ類は”偶蹄類”の中の一系統に過ぎないことが判明した。だから、現在はかつての偶蹄類とクジラ類のすべてを包括した概念として、鯨偶蹄類という分類名を用いる必要があるらしいが、クジラとラクダではあまりにも外見が異なるので同じ分類に属すると言われても面喰いますね。
クジラの祖先たちの復元図を示します。興味深いのは、最初期の有蹄動物の祖先は少なくとも一部が肉食ないし腐食性であったらしいこと。彼らから分化した"偶蹄類"や奇蹄目はその後の進化の過程の中で完全な植物食動物へと変貌を遂げ、本来の肉食動物的特徴を失う。対照的に、現在でもクジラ類は肉食動物(プランクトン食、魚食性のものも含む)であり、肉食動物としての特徴を多く残している。これは、クジラ類が海中で恒温動物として生きていくためには、栄養価の高い動物質の餌のほうが好都合であるためと考えられている。陸上でのクジラの先祖たちは、それほど目立って巨大な存在ではないのに、現在では史上最大の動物として巨大化の進化をとげ、海生動物として大成功を遂げた種と言えそうだ。その進化の速度は、著しく速い。当然環境への適応の結果であるので、何がこのような進化を生み出したの地球環境との関係を調べることが大切なことだ。
生物の世界

海のプランクトン

陸上の植物は大きな木や、地表を一面に覆う草たちで、淡水に棲む単細胞の藻などは極めてわき役的な存在でしかない。実際、我々が発生するCO2の半分はこれらの大きな植物に吸収されているようだ。では残りの半分は?こちらの半分は海で吸収されているという。 キートケロス属 海の主役は?海は地表の3/4を占める。しかし、光合成は海の表面でしか行えない。まあ、これは陸地でも同じ。海は平均では、深さ3000m程度あるが、太陽光が届くのはせいぜい200m程度まで。光合成を行う、一次生産者と言われる植物プランクトンは、単細胞のまま進化し、海面を浮遊する道を選択したということだ。光の届かない深海では、背の高い昆布もワカメも育たない。海面を漂う小さなプランクトン(たいていは単細胞)だけが生存可能だ。海での生物の進化を解明していくためには、どうも単細胞の藻類たちを研究していくことが大事なようだ。ところが、藻類に関する我々に知識は異常に乏しい。
キートケロス属 藻類とは、
藻類とはで示したように。藻類とは何かについてもまだ解明が済んだわけではない。進化の系統図を見てもらえば分かるように、藻類の分類は陸上の植物や動物達とは全く異なった進化を歩んで来たらしい。  海と陸をつなぐ進化論(講談社Blue Back;著者=須藤斎)は面白い視点を提供してくれている。著者は、珪藻の研究をしているかた。そもそも珪藻とは何か。珪藻とはいわゆる単細胞の植物プランクトンで、海の光合成を担っている3大生物(珪藻、円柱藻、渦鞭毛藻)の一つ。海底の堆積物をボーリングしてサンプルを取り出し、顕微鏡でその種類や数、変遷を調べるのが彼の日課のようだ。彼の専門の珪藻も小さな生物だ。0.01~0.03mmぐらい。それでも珪酸(シリカ)でできた硬い殻を有していて、殻の形も実に複雑。珪藻は、上にあげた藻類の分類ではストラメノパイル (Stramenopiles)と言うところに位置している。と言っても良く分からない。この珪藻の一種で、キートケロス属と言う仲間がいる。この珪藻とクジラが共進化してきたというのが須藤氏のスケールの大きな仮説だ。 生物の進化は地球環境の変化に応じて変化する。特にプレートの移動による大陸の移動は地球環境に大きな影響を与える。新生代に入って地球は寒冷化する。南極北極が氷に覆われる。海流の循環が変化する。キートケロス属という珪藻は、休眠胞子と言うものを作って、深海底の底で数か月~数年眠っていることが可能な種だ。こんなことが可能な藻類は他にない。だからこの時代、時折生じる湧昇流にのって、表層に上がって来て爆発的に発生する。この時深層の養分も同時に巻き上げられる。するとこれを餌にするオキアミ等の動物プランクトンも大発生。結果としてクジラ類も急に進化した。珪藻(キートケロス属)の繁栄がクジラ類を繁栄させた可能性がある。
オキアミ 一方、陸に目を移すと大森林がなくなり草地が増える。草地で特に進化したのがイネ科の植物。イネ科の植物は体に珪酸(シリカ)を蓄える。もともとシリカは地中に沢山ある。この硬くて食べにくい草を食べることで進化したのが、牛と馬とか。これらの植物の遺体や動物の糞などが大量に海に流れ込む。珪藻は自分の殻をシリカから作らねばならない。結果として珪藻類が繁栄したのかも。人類だってイネ科の植物(小麦、稲、トウモロコシ)のおかげで発展したのだから、そのもとは大陸の移動だったという壮大な話。でも、この話かなり真実味があるでしょう。そういう仮説が無いと何故、クジラがかくも急激に形を変えて繁栄したのかが説明がつかないでしょう。風が吹けば桶屋が儲かるという例えに似てなくもないが、今後裏付けとなる証拠が揃って来れば定説となるかもしれませんね。

生物の世界

人の細胞

ヒトの成体は約37兆2000億個(37.2×1012)の細胞から出来ている。ということは細胞の数から1を引いた数の細胞分裂が行われてきたことになる。最初の受精した卵子は1つの細胞。それが2つ、4つ、8つと分割し、最終的にこの驚異的な数に到達する。 人生を60年として単純な割り算を試みてみよう。
  37.2×1012個÷60年÷365日/年÷24時間/日÷60分/時÷60秒/分=19,660個/秒
つまり、平均すると毎秒約2万個の細胞が休みなく分裂を続けていることになる。でも、この仮定はあり得ない。細胞は、分裂した直後は重さは半分になるはずであるが、すぐに栄養を取り入れて元との大きさに戻るだろう。細胞が幾何級数的な増えていくなら、60歳の人は59歳の人よりも2倍ぐらい大きくならないとつじつまが合わないから。
だから、細胞分裂は人が若い時、特に幼児の段階で、イッキに進み、人生の後半での細胞の数はほぼ一定なのでしょう。また、細胞は分裂する度に数が増えるとすると、それに見合った細胞の死も考えないといけないでしょう。
では、次の細胞が倍々ゲームのように一回の分裂ごとに2倍に増えると考えるとどうなるでしょうか。初めの受精卵の時は、1個(20=1)の細胞です。何回分裂すれば成体の細胞数になるのでしょうか。
  2n=37.2×1012を満たすnを求めるといいですね。こういう時は対数を使うといいんですね。関数電卓が必要ですが、対数には底が10の常用対数と、底e(オイラー数)の自然対数があるので間違えないで下さい。
   n log102= log10(37.2)+12、   ここで、log102=0.30103、 log1037.2=1.571
これからnを求めると、細胞分裂の回数は45回となる。受精してから、45回分裂すれば、成人の細胞の数になる。実際、245=35兆個。つまり、1日1回の速度で分裂を続ければたった45日程度で成体の大きさまで成長できる。そう考えると、そんなに難しいことでもあなさそうだ。そう考えると細胞の数が約40兆個存在することは脅威でもなんでもないことだ。
この大きな数に関しては、有名な笑い話がある。曽呂利新左エ門という豊臣秀吉のお傍衆が、何かの理由で秀吉に褒められて褒美をもらうことになった。「そちに褒美を取らせよう。何なりと申して見よ。」「はい、米粒を頂きたく。最初の日は一粒、次の日は二粒、三日目には四粒、…」、「ほう、米粒か。そちは、欲が無いのう。」、結果はもうお分かりの通り、45日目には約40兆粒の量。米粒は細胞と比べるとかなり大きいので、大変な量になるんでしょうね。
しかし、細胞はいくら分裂しても単なる細胞の集まり。どこかで役割分担をして組織を作らなければ何の意味もありません。発生の初期の細胞はES細胞などと言って、何にでも成れる能力がある代り、役割も決まっていない。どこかで心臓になったり、目になったりしないと役に立たない。更に、最初の生物は皆、単細胞生物であったことは分かっている。それも地球の歴史の中ではほとんどの時間生物は単細胞の生き物として進化してきている。単細胞の生き物はそれ自体で完結した生き物で、摂食、排泄、呼吸と言った、働きを独立して行うことが可能だ。それを何故、単細胞生物が集まって多細胞生物が生じたのか。多細胞の各々細胞は大抵単機能で他の細胞の助けが無いと生きていけないリスキーな存在だ。多細胞生物の細胞がどのような仕組みで分業をなすようになったのか、まだまだ生物の世界は謎が多い。

生物の世界

ルイセンコ学説

ルイセンコ学説は、ソビエト連邦の時代に社会主義国家を支配した重要な生命観。本来は生物の進化に関する仮説だったのが、いつの間にか政治思想に転嫁し、社会主義国家の経済破綻に大きな寄与をしたようだ。
事の始まりである。ルイセンコ論争とは、環境因子が生物の形質の変化を引き起こし、その獲得形質が遺伝するという考え。生物が進化していくことは認めているのでダーウィンの進化論を否定している訳ではない。その点はキリスト教原理主義のような進化論を否定する論とは一線を画す。メンデルのよって証明された遺伝の法則。親の形質を子が受け継ぐ。でも、せっかく新しい性質を親が獲得しても子に伝わらなければ進化という現象は起こりえない。ダーウィンの先輩にラマルクという偉人がいた。彼の基本命題は、「獲得形質は遺伝する。」というもの。このことは、遺伝の研究をしていた学者たちに猛反撃を受ける。要は、あなたがジムで筋トレすれば、あなたの孫はマッチョマンになるか。今では、「獲得形質は遺伝しない。」と言うのが科学界の常識だろう。 しかし、あなたが猛勉強して音楽家として有名になれば、自分の子供にもピアノを習わせたり、いい先生に着けたり努力するので、その結果音楽一家といったものが形成されることもあるという事実もある。だから、全く否定される考えでもなさそうだ。
ルイセンコ スターリン 毛沢東
ルイセンコの学説はヨシフ・スターリンによって支持されたため、政治運動に転化してしまう。当時のソ連の生物学会ではルイセンコの学説に反対する生物学者は処刑され、強制収容所に送られるなど粛清された。更には他の学問に飛び火して、その結果、多くの学者が、反革命的ブルジョワ思想の持ち主をして公職から追放され、シベリアなどに流刑となったりしたと言われる。スターリン失脚後もフルシチョフもこの考えを支持していたので、ルイセンコ主義は1920年代末に始まり、1964年に公式に終焉した。ルイセンコはレーニン全ソ連農業科学アカデミーの長として活動した。ルイセンコ主義は1920年代末に始まり、1964年に公式に終焉したとされている。
ルイセンコ主義の疑似科学的発想は獲得形質の遺伝性を仮定していた。ルイセンコの理論はメンデル遺伝と「遺伝子」の概念を否定し、自然選択を否定することでダーウィン進化論から逸脱した。ルイセンコ主義は育種や農業において並外れた進歩を約束したが、それらが実際に起こることはなかった。後天的に獲得した性質が遺伝されるというルイセンコの学説は努力すれば必ず報われるという全体主義国家には都合のよい理論でもあるが、マルクス主義のマルクス自身がダーウィンの進化論(ラマルク的な)の影響を強く受けていた(彼の友人のエンゲルスが証明している)とも言われており、マルクス主義とは相性が良かったのかもしれない。
スターリンの思想は、中国に飛び火して、毛沢東による文化大革命を引き起こす。北朝鮮の「主体思想」とやらもその影響らしい。その結果、これらの思想に汚染された国では、著しい農業生産の低下と経済の停滞を引き起こすことになったという事実は忘れてはならない。

生物の世界

白雪姫と7人の小人達

物語の舞台はかなり大昔のこと。一人の少女が森の中へ逃走する。理由は分からないが何か命の危険があったのでしょう。一人で逃げても当時の森は、野生動物もいて大変危険。でも、更に危険な存在は一人暮らししている人間がいる場合だ。彼らは魑魅魍魎(ちみもうりょう)、鬼、悪魔、魔女だのと呼ばれて人々から恐れられているが、実は彼ら自身が逃亡者、見知らぬ人と出会うとつい本能的に敵意をむき出しにして攻撃してしまう。
幸い、森には優しい先住者がいた。7人の少年の兄弟達だ。彼等も何らかの理由で森の中に逃げ込んで来たのだろう。しかし、兄弟が力を合わせることで森の中に生活の場を確保したようだ。 何故、彼らは小人といわれるのか。背丈は当時の人類の標準から言えば、やや低いかも知れない。それよりも、手足が細く、全体に華奢な体つき。生格も温和で人懐っこい、また非常に好奇心が強い。おしゃべりが大好き。いわば子供っぽい性格であった。 だから、7人の兄弟たちは少女を大歓迎で受け入れて、仲間の一人に加える。グループは8人になり、少女は母親役、姉、妹、友人とすべての役割を一人で引き受ける。以後、少女の名をエバと呼ぶことにしよう。
彼等の住む世界は8人だけが総てで、それ以外は異次元空間の野蛮人の住家だ。だから、彼らは世界を存続させるため、自分達の子孫を作ることを考えたであろう。ある日、エバは兄弟たちの一人の愛を受け入れる。また、同時に他の兄弟たちの愛も公平に受け入れる。子供が無事生まれる。エバは、また同じように次の子も身ごもる。世界の平和のためなら父親が誰かは不明の方がいいに決まっている。子育てだってみんなで協力してやればうまく行く。
こうして、彼らの子供たちが更に次の子供たちを造る。子供は世界の財産だ。誰が親かは関係なく公平に育てられる。例え拾ってきた外の世界の捨て子でも、珍しい客人として大事に育てられた。こうして一族は見る見る間に大家族に発展した。
最終的に7人の兄弟達と1人の少女の純粋な愛と勇気、集団への帰属意識、知的好奇心等が結局、周囲の類人猿たちを駆逐して新しい種族をの世界を造り出したのでしょう。最後に愛は勝つということですか。
エバの家族は、その後大発展して、生まれ故郷を後にして、地球のあらゆるところに住むようになりました。でも、彼らの「世界は一つ、人類は皆兄弟」という理念が失われ、互いに相争うようになって来たという問題も発生しています。
エバが生きていた時代、まだ衣服は発明されなかったようだ。エバは、その成熟した美しい体を、7人の兄弟たちに四六時中晒していたと思われます。寒い冬には当然肌を寄せ合い、他の兄弟達がしているように互いに性器にも触り合うぐらいのことはしていたでしょう。性交はエバがOKならいつでもOK。人は当時絶滅の危機にあったのですから、子孫を効率良く残すことは遺伝子にとっては最大の課題。セックスを繁殖以外の目的、娯楽やコミュニケーションの手段として使うのは、類人猿としては人だけかと思いきや、ボノボにもそのような行動がみられるらしい。しかし、これも間接的に繁殖を増やす手段にもなっているので遺伝子の技としては辻褄が会っているかも。

生物の世界

キツネがペットになる日

キツネは哺乳綱(食肉目=ネコ目)イヌ科イヌ亜科と分類されており、犬とキツネはもともと系統的に近い動物だ。でも、今では犬の先祖は狼であったことは確実視されている。オオカミは集団で狩りをする。人と同じ社会生活の動物。一方のキツネは単独で行動する。でも、人懐こいキツネを代々掛け合わせる品種改良を続けていると、抱き上げても喜ぶような人懐こいキツネを造り出すことに成功したのだ。一方、凶暴な性格のキツネを代々掛け合わせて行けば、凶暴な性格のキツネを造ることも出来ることも分かった。この研究は以前NHKでも紹介されていたが、シベリアにある遺伝研究所の動物の家畜化の研究プロジェクトの一環として今でも研究が続けられている。
ルイセンコ fox1 fox2 fox3
もともと、この研究所はドミトリー・べリアエフという高名な遺伝学者によって創設されたもので、動物の家畜化に関する研究では世界のトップランナーなのだ。ソビエト連邦の時代は、非常に特殊な事態がいくつも絡まり、生物学の世界では正当な考えとされていた遺伝の考え方が、ブルジョワ反動的世界観と結びつけられ、多くの学者が追放され、処刑されたり強制収容所の入れられたりと大変な時代となったらしい。
この責任は、当時台頭してきたトロフィム・ルイセンコという新参の農学者にあったとされている。しかし、真の原因は当時のソ連の指導者ヨシア・スターリンが直面した深刻な食糧不足にあったようだ。急激な農業の集団化を強制的に実施したことが大飢饉の原因だった。スターリンには何としても食料不足を解消する手段が欲しかったようだ。鉄のカーテンの向こうからの援助も期待したくない。標準的なメンデル遺伝学では改良小麦など、到底ありそうもない突然変異を期待しないと不可能だ。遺伝学者たちが、首を縦に振らない中、この新参の農学者が、適切に環境要因を操作すれば遺伝的性質が望ましい形質を持つような方向付けが可能だと主張し、スターリンがぞっこん惚れて飛びついたの実態のようだ。後継者となるフルシチョフにも多少の影響を与えたようだ。
しかし、ルイセンコの考えが間違っていたのか、それを元に実施された方策が不適切だったのが、更にもっと別な経済的な要因があったかは分からないが、ソ連邦の農業生産は結局向上せずに、ソ連邦は崩壊してしまう。遺伝の考え方が、ブルジョワ反動的世界観と結びつけられ、多くの学者が追放されたのは、中国の毛沢東思想も同じルーツみたいだ。
ところで、ベリアエフ氏はシベリアに左遷される。しかし、彼は中央の監視が届かないことを逆手に取り、正統な遺伝研究の基地をシベリアに作り上げることに成功する。キツネの研究は、犬の家畜化の過程を解明しようという意図がある。
犬の先祖のオオカミは、人と同じく集団で狩りを行うライバル同士だった。人もオオカミも互いに近くで生活するようになると、狼の中には人間が近づいても平気な個体が出現するようになる。自分が敵意を示さなければ、相手も敵意を示さない。人を見たら唸る狼より餌貰って尻尾振っている個体の方が生き残る率が高い。でも、その結果家畜化された犬はずいぶん体の形も変わったね。この進化は人類が犬を家畜化してからだから、せいぜい1万年以内に起こった変化だ。化石になった骨だけ見たら同じ種とは思えない。と言うより、人が動物を家畜化するまでは、起こりえない変化だ。
動物の家畜化を研究することは、何故生物か進化したかを解明するための重要なヒントを与えてくれる。犬の家畜化は、遺伝子自体はそんなに変化しなくても、その表現形態は大きく変えられる。しかし、いくら人間が努力しても犬は猫には代えられない。遺伝子と言うのは非常に保守的なものだ。犬とキツネが分岐してもその共通先祖の遺伝子はキチンと引き継がれている。つまり、キツネも犬と同様に品種改良してペットに出来る。メンデルの遺伝学では、進化の原動力を突然変異だけで説明しようとしていた。突然変異自体は基本的に遺伝子にとっては迷惑なことだ。いわゆるコピーミス、こんなものが進化の原動力か。でも、いま研究されている遺伝アルゴリズム。適当にコピーミスが発生するのを期待している面もない訳ではない。ダーウィンの進化論。未だに答えの出ていない面白い話題なのです。

生物の世界

キャメル・ロード

シルクロード。古代からユーラシア大陸の東と西を結ぶ重要な通路だ。ただし「シルクロード」の概念は一義的ではなく、広義にはユーラシア大陸を通る東西の交通路の総称。具体的には北方の草原地帯のルートである草原の道(1)、中央の乾燥地帯のルートであるオアシスの道(2)、インド南端を通る海の道(3)の3つのルートをいう。しかし、狭義にはもっとも古くから利用されたオアシスの道を指してシルクロードといいこの方が一般化しているだろう。オアシスの道は中国からローマへは絹、アルタイ山脈から中国へは金が重要な交易品となっていたことから、このルートは「絹の道」あるいは「黄金の道」と呼ばれており、のちに草原の道や海の道が開けるまでは最も合理的な東西の交易路であった。その一部は2014年に初めて「シルクロード:長安-天山回廊の交易路網」としてユネスコの世界遺産に登録されているとのこと。
camel1   camel2
シルクロードを移動する交通手段は何だろうか。今なら四輪駆動の車だろうが、当時はそんなものは利用できない。馬車を使おうにも砂漠やぬかるみにはまって動けなくなるのが落ちだ。最初は徒歩が主流だったかも知れないが、そのうちに馬の背中に荷物を載せたとも考えられる。でも、実はもっと有効な手段がある。それがラクダの利用だ。
ラクダは人が家畜化した動物の中では最大のもの。例外は東南アジアでの象ぐらい。ラクダは野生の物から余り形が変わっていない。でも、ヒトコブラクダとフタコブラクダの区別はある。フタコブラクダの方が若干寒冷な気候に強いこと、どちらが優れているという訳でもなさそうだ。 なぜ、シルクロードを移動する交通手段として優れているか。まず、ラクダは馬と比べて体が一回り大きい。だから大量な荷物を運べる。生格は我慢強く従順。水や食料の乏しい乾燥地帯でも何日も我慢できる。だからシルクロードはラクダの隊商たちが往復する道だったということだ。ヒトコブラクダは西側に多く、フタコブラクダは東側に多いとされる。中央アジアに行けば、両方のラクダが仲良く草を食んでいる風景を見ることが出来る。
東の中国側からフタコブラクダに積まれた商品は、中央アジアのオアシス都市で、ヒトコブラクダの背中の商品と交換し、また東に帰っていき、西から来たヒトコブラクダの背中に積まれた商品は、同じように東から来た商品に詰め帰られてまた、西に帰っていく。
ヒトコブラクダとフタコブラクダをかけ合わせれば、その子供はどうなる。メンデルの法則が成り立つんでしょうか。ミツコブのラクダが出来る心配は無いようだ。ラクダの隊商達にとってはコブの数はどうでもいい問題なんでしょう。しかし、ラクダの最大の役割は輸送手段なので、車社会になって来て、その役割がドンドン小さくなった行っているようだ。
ラクダは、イスラム圏では戦争にも使われていたようだ。騎兵ならぬ駱駝兵なんて言うのがあって、西欧の十字軍騎兵達は散々苦しめられたらしい。ラクダは馬よりも体が一回り大きい。相手方の馬は恐れをなして逃げ出してしまうらしい。だから、アラビアのベドウィン族などにとっては、ラクダはいまでも大変貴重な財産らしい。
世界の物流が、陸路から海路に転換していったことで、シルクロードの価値は低下してしまった。オアシス都市が衰退し、駱駝が無用の存在になりつつある。

一帯一路(いったいいちろ、拼音: Yídài yílù、英語: The Belt and Road Initiative)は、習近平総書記が提唱した経済圏構想で、史上最大規模のインフラ投資計画と言われている。どうもこの道は、鉄道が主体のようだ。しかし、シルクロードの復活という意味では注目できそうだ。それで、現代版のシルクロードは何を運ぶというのか。情報化時代。東西の人間の交流という面が最も大きな側面でしょう。

生物の世界

シアノバクテリア

藍藻 藍藻、シアノバクテリア (藍色細菌、cyanobacteria) とよばれることも多いが、地球上に初めて現れた酸素発生型光合成生物(およそ25〜30億年前)のようだ。これによって地球は太陽系でただ一つの大気に酸素を有する惑星になる。
おそらく藍藻の光合成によって、地球上に初めて酸素と有機物が安定的に供給されるようになったはずだ。これによって最初に大量の鉄鉱石が生成され、いま人類がそれを利用している。

ストロマトライト それに続いて大気中に大量に酸素が供給され多くの微生物が絶滅し、代わりに酸素呼吸を行う生物が増加する。また、酸素の大量増加でオゾン層が形成され、地上に届く紫外線の減少から陸上でも生物が住めるようになる。このように地球環境は激変し (大酸化事変とよばれる)、現在へとつながる生態系の基礎が築かれたといえる。

酸素発生型光合成というシステムは、生命の歴史の中で唯1回、藍藻の祖先において誕生した。この酸素発生型光合成能は、細胞内共生 (一次共生) を経て葉緑体の形で真核生物に取りこまれ、多様な真核藻類 や陸上植物 のもととなる。おかげで海や陸の動物達も進化できるようなった。
光合成色素として、緑色のクロロフィルの他に、青いフィコシアニンを多くもつため、青緑色 (藍色) をしていることが多い。細菌の中には、他にも光合成を行うグループが存在するが (光合成細菌と総称される)、酸素発生型光合成を行う細菌は藍藻のみ。

アオコ 藍藻(blue-green algae)とは、酸素発生を伴う光合成 (酸素発生型光合成) を行う細菌の一群、またはそれに属する生物のことをいう。系統的には細菌ドメイン (真正細菌) に属する原核生物であり、他の藻類よりも大腸菌や乳酸菌などに近縁である。
藍藻は単細胞、群体、または糸状体であり、原核生物としては結構複雑な形に見えるものもある。細胞は直径 1 µm 以下のこともあるが、原核生物としては大型のものが多く、直径 100 µm に達するものもいる。藍藻は原核生物であり、DNAは核膜に包まれず、また葉緑体やミトコンドリア、ゴルジ体などの細胞小器官をもたない。細胞内で生体膜に包まれた構造としては、光合成における光化学反応の場であるチラコイドのみが存在する。
藍藻は今でも海から淡水、陸上に広く生育し、藍藻がいない環境を探すのは難しい。量的にも多く、その生物量は10億トンに達するとの試算もある。またアオコや健康食品などの形で人間生活とも密接に関わっている。

生物の世界

ミトコンドリア

ミトコンドリアは不思議な生き物??だ。細胞の中にある別の細胞のように見えるからだ。二重膜に包まれ、自分自身のDNAを持っている。自由生活する酸素を利用できる細菌が別の最近に取りこまれ共生生活を始めたのが起源とする説が出てきて、今ではそれが概ね認められた説のようだ。

ミトコンドリア ミトコンドリア
総ての動物、植物等の真核生物の細胞内のミトコンドリアの起源は単一であることが分かって来た。ミトコンドリアは真核生物の細胞から出たら活きて行けない点では、それ自身単独の生物とは言えないかもしれないが、元をたどれば好気性細菌でリケッチアに近いαプロテオバクテリアというものが候補に挙がっているらしい。 ミトコンドリアはソーセージのような形をした細胞内器官で、酸素と糖などから真核生物のためのエネルギーをせっせと作っている。更に、鉄硫黄タンパク質に必要な、鉄硫黄クラスター(複合体)を造ることも重要な役目らしい。

ミトコンドリアのDNAは、動物の遺伝子にも、真核生物の遺伝子にも似ていない。一番似ているのは細菌の遺伝子らしい。ということでミトコンドリアがどのような細菌から進化したのかが問題になる。最近の研究では、SAR11というありふれた海洋細菌のクレード(分類群)が候補に挙がっている。海洋性細菌の25%がこのクレードに含まれる。これらの細菌は海水に溶けた炭素や酸素を利用している。

** SAR11
リケッチア目は、αプロテオバクテリアに属する細菌からなる分類群であり、その多くは他の細胞の内部でのみ生存可能である。 ヒトに各種疾病を引き起こすリケッチアのような病原体が含まれているが、細胞内共生説においてミトコンドリアの起源となった細菌もここに由来すると考えられている。ウイルスがリケッチアやそれに類似の生物から生じたと考える者もいる。培養が困難であることもあり、プロテオバクテリアの中でも最も謎につつまれたグループといえる。 リケッチア目には、主として海洋から見出されるSAR11という難培養系統を含んでいる。ここには自由生活性で浮遊性の種が多数存在しており、例えば世界中の海洋に遍在する細菌が所属している。この系統はリケッチア目の中でも最も祖先的な位置から派生しており、ミトコンドリアの起源は自由生活性のSAR11とその他の細胞内寄生性のリケッチアとの間に由来すると考えられている。

**クレード:系統群(Clade)とは、共通の祖先から進化した生物群のこと。側系統群、単系統群、多系統群などがある。

生物の世界

ネコ科動物の進化

ネコ科系統

ミアキスは、約6,500万前~4,800万年前(暁新世から始新世中期)に生息した小型捕食者です。現代のイヌやネコ、アシカなどを含む食肉目の祖先、あるいは祖先に近縁な生物と考えられています。
フォッサ  体長は約30cmで、胴は長くほっそりしており、長い尾、短い脚などから、イタチあるいは、現在マダガスカルのみに生息するフォッサなどに似た姿であったと推定されています。後肢は前肢より長く、骨盤はイヌに近かったようです。四肢の先端には、引っ込める事の出来る鉤爪を備えた、五本の趾がありました。頭骨については、身体に対する脳頭蓋の比率からいうと、同時期の肉歯類などよりも大きめです。
**フォッサ
フォッサは、哺乳綱食肉目マダガスカルマングース科フォッサ属に分類される食肉類。本種のみでフォッサ属を構成する。マダガスカル島の唯一の食肉類で貴重な動物だ。

ヒアエノドン 当時の地上はヒアエノドンなど肉歯類が捕食者の地位を占めていたため、新参の彼らは樹上にとどまっていた。その生態は現生のテンのようであったとされ、おそらくは鳥類や爬虫類、同じ樹上生活者である小動物などを捕食していたと思われます。でも、肉歯類は間もなく絶滅し、食肉目の動物達にニッチが埋められる。

**肉歯目:
肉歯目は、約5500万年前から約800万年前(新生代古第三紀暁新世後期から新第三紀中新世後期)にかけて生息していた、原始的な肉食性哺乳類の一分類群である。
当時のアフリカおよびローラシア、すなわち、現在のアフリカおよびユーラシアと北アメリカにあたる地域(これらは当時、一つの大陸であった)に広く分布していた。
かつて肉歯目は食肉目の祖先と考えられていた。しかし現在では、さらに古い祖先を共有する関係だと見なされている。

プロアイルルス プロアイルルス(Ploailurus)はおよそ2,500万年前(漸新世後期~中新世)に、ヨーロッパからアジアにかけて生息していた肉食獣です。プロアイルルスは小柄で、体重はおよそ9キロほどだったと考えられていますので、今の猫よりもほんの少しだけ大きいくらいです。長い尾、大きな目、鋭利なかぎ爪と歯をもち、今で言うジャコウネコに近かったと考えられています。かぎ爪はある程度出し入れが可能で、ジャコウネコ同様、樹上で生活することもあったようです。いまだ決定的な証拠は無いものの、後述するプセウダエルルスの祖先であると考えられています。

プセウダエルルス(Pseudaelurus)は、プセウダエルルスおよそ800万~2,000万年前(中新世)にヨーロッパ、アジア、北アメリカに生息していた先史時代の動物です。現代のネコ科動物の祖先と目されており、また絶滅したマカイロドゥス亜科(サーベルタイガーなど)にも枝分かれしていました。細身の体やジャコウネコのような足の形から、動きが敏捷で木登りもうまかったと推測されています。

サーベルタイガー マカイロドゥス(マカイロドゥス亜科)は、肉食哺乳動物であるネコ科の亜科として位置づけられます。中新世から更新世にかけて、アジア、アフリカ、北アメリカ、南アメリカ、そしてヨーロッパに限定的に生息していました。サーベルタイガー(saber-toothed cat)の名称で有名な、絶滅した「スミロドン」や、スミロドンと似た動物を含み、長く伸びた犬歯を特徴としています。
 サーベル状の牙(犬歯)の見た目は頑丈そうですが、実は平べったくて意外にもろいものでした。このことから、獲物の「うなじ」にグサリと牙を突き刺すのではなく、首の前面にある気管や頚動脈を切断するために使われていたのだろうと推測されています。

ネコ科動物の系統樹
ネコ科系統  2007年、アメリカの遺伝学者スティーヴン・J・オブライエン氏らが行った遺伝子調査によると、現在生息しているすべてのネコ科動物の祖先は、今からおよそ2000万年前、ヨーロッパあたりに生息していたプセウダエルルスである公算が高いとのこと。中でも1100万年前頃、アジアに生息していたヒョウのような捕食動物の一種が、ネコ科動物の共通祖先であろうとしています。
 この「アダムとイブ」からおよそ1000万年かけて枝分かれしたネコ科動物は、私たちがよく目にする猫(イエネコ)を含めて、現在37種とするのが一般的です。オブライエン氏らによると、遺伝的に見てこれら37種を8つの系統に分割するのが妥当で、この見解は形態学的、生物学的、生理学的に見ても矛盾しないとのこと。以下では、同氏らが推定していいるネコ科動物の系統樹、およびネコ科に属する8系統37種をご紹介します。

ヒョウ系
 ヒョウ系(Panthera)は大型肉食動物で、大きいものでは体重が350kgに達することもあります。分類学上は「Panthera属」と「Neofelis属」を含みます。ウンピョウに属する2種以外では吠えることができるのが特徴です。祖先種から分岐したのは、全てのネコ科動物の中で最も早い1080万年前頃と推定されています。
ライオン/ヒョウ/ジャガー/トラ/ユキヒョウ/ウンピョウ

ボルネオヤマネコ系
 ボルネオヤマネコ系(Bay Cat)は、主に東南アジアの熱帯地帯に生息する小型の動物で、体重は2~16kg程度です。DNA解析をする前まで分類が困難だったマーブルキャットもここに含まれます。祖先種から分岐したのは今から940万年前頃とかなり初期ですが、わずか100万年の差しかないヒョウ系とは20倍近くの体格差があります。
ボルネオヤマネコ/テミンクネコ/マーブルキャット

カラカル系
 カラカル系(Caracal)はアフリカにだけ生息している動物で、体重は5~25kg程度です。長くほっそりした四肢が特徴で、跳躍力は2~3mに達します。祖先種から分岐したのは、今から850万年前頃と推定されています。
カラカル/アフリカゴールデンキャット/サーバル

オセロット系
 オセロット系(Ocelot)は中央アメリカから南アメリカにかけて広く生息している動物で、体重は1.5~16kg程度です。祖先種から分岐したのは、今から800万年前頃と推定されています。
オセロット/ジェフロイネコ/コドコド/ティグリナ/アンデスネコ/コロコロ/マーゲイ

リンクス系
 リンクス系(Lynx)は北アメリカやユーラシアなど温暖な気候に暮らす動物で、体重は6~20kg程度です。分類学上は「Lynx属」を含みます。短いしっぽとピンと立った耳を特徴としており、かつては毛皮の供給源となったという悲しい歴史があります。祖先種から分岐したのは、今から720万年前頃と推定されています。
スペインオオヤマネコ/ヨーロッパオオヤマネコ/カナダオオヤマネコ/ボブキャット

ピューマ系
 ピューマ系(Puma)は北アメリカで生まれた後、各大陸へ散らばっていった動物で、体重は3~65kgと幅があります。祖先種から分岐したのは、今から670万年前頃と推定されています。
ピューマ/ジャガランディ/チーター

ベンガルヤマネコ系
 ベンガルヤマネコ系(Leopard Cat)はアジアの広い範囲にわたって生息している動物で、体重は2~12kg程度です。不思議な風貌で人気のマヌルネコだけは、590万年前というかなり早い段階で他の種から枝分かれしたようです。祖先種から分岐したのは、今から620万年前頃と推定されています。
ベンガルヤマネコ/スナドリネコ/マレーヤマネコ/サビイロネコ/マヌルネコ

ネコ系
 ネコ系(Domestic Cat)は、現在世界中で最も繁栄しているイエネコを含む系統で、体重は1~10kgとネコ科動物の中では最も小柄な部類に属します。祖先種から分岐したのは、今から340万年前頃と最も直近です。
イエネコ/ヤマネコ/スナネコ/クロアシネコ/ジャングルキャット

生物の世界

脊椎動物

脊椎動物とは何でしょう。四足動物(両生類、爬虫類、鳥類、哺乳類)の他、魚類も含まれます。魚類には硬骨魚類といわれる普通の魚(サバやマグロ、メダカ)に加えて、軟骨魚類といわれるサメやエイに仲間も脊椎動物と呼ばれるようです。脊椎動物の先祖に当たるのが脊索動物、ホヤとかピカイア等。Wikipediaでは以下のような説明が。

Vertebrates comprise all species of animals within the subphylum Vertebrata (chordates with backbones). Vertebrates represent the overwhelming majority of the phylum Chordata, with currently about 69,963 species described. Vertebrates include such groups as the following:
jawless fish, jawed vertebrates, which include the cartilaginous fishes (sharks, rays, and ratfish), tetrapods, which include amphibians, reptiles, birds and mammals, bony fishes.

** vertebrate=脊椎動物、subphylum=亜門、phylum =門、chordate=脊索動物 tetrapod=四足動物

脊椎動物は、脊索に加えて背骨を持ったもの。脊索動物の中の亜門と位置付けられているようだ。脊椎動物は昔からよく研究されて来たので、ほとんどの動物が含まれているみたいですが、実はほとんどの動物は脊椎動物でもないし、脊索動物でもないのです。例えば、昆虫は?。タコやイカは?。エビカニミミズは?。

Extant vertebrates range in size from the frog species Paedophryne amauensis, at as little as 7.7 mm (0.30 in), to the blue whale, at up to 33 m (108 ft). Vertebrates make up less than five percent of all described animal species; the rest are invertebrates, which lack vertebral columns.

extant=現存の、invertebrate=無脊椎動物
現存の脊椎動物は8mm程度のカエルの仲間から30mのクジラまでいます。しかし、分かっている種としては全動物のせいぜい5%以下で、他は総て無脊椎動物と位置付けられるのです。

hagfish The vertebrates traditionally include the hagfish, which do not have proper vertebrae due to their loss in evolution, though their closest living relatives, the lampreys, do. Hagfish do, however, possess a cranium. For this reason, the vertebrate subphylum is sometimes referred to as "Craniata" when discussing morphology. Molecular analysis since 1992 has suggested that hagfish are most closely related to lampreys, and so also are vertebrates in a monophyletic sense. Others consider them a sister group of vertebrates in the common taxon of craniata.

**hagfish=フグ??、lamprey=ヤツメウナギ、cranium=頭蓋骨skull、形態学=morphology、 in a monophyletic sense=単系統の意味で、

hagfishは、どうもフグとは異なります。ヤツメウナギと良く似た生き物。脊椎動物という代わり頭蓋骨を持った生き物という考えもあるようです。異論もあるようですが。

Etymology語源
The word vertebrate derives from the Latin word vertebratus (Pliny), meaning joint of the spine. Vertebrate is derived from the word vertebra, which refers to any of the bones or segments of the spinal column.

vertebrateの語源は、ラテン語からでセグメントが繋がったような背骨を表すらしい。

Anatomy and morphology解剖学と形態学
All vertebrates are built along the basic chordate body plan: a stiff rod running through the length of the animal (vertebral column and/or notochord), with a hollow tube of nervous tissue (the spinal cord) above it and the gastrointestinal tract below.

**gastrointestinal tract=消化管
脊椎は脊索に沿って形成されるようだ。その周りに神経管、消化管が形づくられる。

In all vertebrates, the mouth is found at, or right below, the anterior end of the animal, while the anus opens to the exterior before the end of the body. The remaining part of the body continuing after the anus forms a tail with vertebrae and spinal cord, but no gut.
**anterior end of=前端front end、exterior=外部、gut=腸、Vertebral column脊柱

体の前に口が、体の後ろの肛門が出来る。



coelacanth The defining characteristic of a vertebrate is the vertebral column, in which the notochord (a stiff rod of uniform composition) found in all chordates has been replaced by a segmented series of stiffer elements (vertebrae) separated by mobile joints (intervertebral discs, derived embryonically and evolutionarily from the notochord).

** notochord=脊索、
脊索が成長に伴って、脊椎に置き換えられていくようだ。

However, a few vertebrates have secondarily lost this anatomy, retaining the notochord into adulthood, such as the sturgeon and coelacanth. Jawed vertebrates are typified by paired appendages (fins or legs, which may be secondarily lost), but this trait is not required in order for an animal to be a vertebrate.

** sturgeon=チョウザメ、coelacanth=シーラカンス

生物の世界

前口動物と後口動物

基本的にすべてに動物は、前口動物と後口動物に二分される。
前口動物(Protostome)は、初期胚に形成された原口がそのまま口となって発生する動物。原口動物・先口動物・旧口動物ともいう。
一方、後口動物(Deuterostomia)とは、原口が口にならず、肛門となり(あるいは、原口の付近に肛門が形成され)、口は別に形成される動物。新口動物(しんこうどうぶつ)ともいう。 前口動物には、扁形動物・輪形動物・腹毛動物・環形動物・軟体動物・節足動物など、多くの動物門が含まれる。
後口動物には、棘皮動物・半索動物・脊索動物を含まれる。
刺胞動物などの2胚葉性動物はどちらにも含まれない。真体腔性の動物についてのみ言われることもある。
左右相称動物の進化の初期に、前口動物と後口動物が分岐したと考えられている。
初期胚に形成された原口というものが、入り口になるか出口になるかで、その後の分岐が大きく分かれることになる。

**扁形動物とは、扁形動物門 Platyhelminthes に属する動物の総称。プラナリア、ヒラムシ、コウガイビル、サナダムシなどが扁形動物門に属する。
「扁形」と呼ばれるようにこの門の動物は平らな形をしている。循環器官や特別な呼吸器官を持ってはいない。血管やえらがなく、体に栄養や酸素を運ぶには拡散に頼っている。

**輪形動物は、いわゆるワムシ類と総称される動物の分類群である。

**腹毛動物とは、淡水および海産の微小な多細胞動物。

**環形動物(とは、環形動物門に属する動物の総称である。多くが原則として体節制をもち、体は環状の柔らかい体節に分かれている蠕虫状の動物である。環帯類(ミミズとヒルなど)、多毛類(ゴカイなど)を含むほか、体節構造を二次的に失い、かつては独立した門だと思われていたシボグリヌム科(有髭動物)、ユムシ類(ユムシ動物)、ホシムシ類(星口動物)を含む事が分子系統解析から分かり、多毛類が非単系統群である事もわかっている。

**棘皮動物とは、棘皮動物門に属する動物の総称である。ウニ、ヒトデ、クモヒトデ、ナマコ、ウミユリなどが棘皮動物に属する。

**半索動物は、後生動物の1グループである。ヒトなどの脊索動物や棘皮動物とともに新口動物に属する。おそらく棘皮動物に近縁だが、新口動物の基底的な側系統とする説もある。腸鰓類(ギボシムシ類)と翼鰓類(フサカツギ類)の2つの主要な現生グループを含む。ギボシムシ類は柔軟性に富む肉質の体を持ち、浅海の砂泥中に生息している。フサカツギ類は深海底などで群体を形成し、固着性の生活をしている。また、筆石とよばれる化石は、フデイシ類という絶滅した第3のグループに分類される。

生物の世界

多細胞生物

多細胞生物(multicellular organism)とは、複数の細胞で体が構成されている生物のこと。一つの細胞のみで体が構成されている生物は単細胞生物。動物界や植物界に所属するものは、みな多細胞生物。菌界のものには多細胞生物と若干の単細胞生物が含まれる。肉眼で確認できる大部分の生物は多細胞生物。

単細胞生物は一細胞が一個体であり、細胞分裂がそのまま個体の増加につながるのに対し、多細胞生物の有性生殖では生殖細胞のみが次世代に引き継がれる。個体の増殖速度は単細胞生物の方が早く、短時間での繁殖には有利であるが、多細胞生物は細胞を専門化させ複雑な機能を獲得することにより生存を有利にする戦略をとってきた。

生物は進化の過程において複数回にわたって多細胞体制を獲得してきたようだ。動物、菌類、植物はそれぞれ独立に多細胞化したと考えられている。比較的最近になって多細胞化した生物としては群体ボルボックスが知られている。化石の記録によると最初の多細胞生物は約10億年前に誕生したとされており、生物の誕生が35億年前であるから、多細胞化には25億年近くも必要としたことになる。多細胞化においては細胞同士の接着や、周りの細胞との協調が必要とされることから細胞間での情報伝達(シグナル伝達)が発達する必要があり、単細胞真核生物にこれらの機能が備わるまでに時間がかかったと考えられている。
多細胞生物というのは、細胞がたくさん集まっているだけでなく、細胞間に役割分担ができ、全体として一つの生物となっていることが必要だ。

よく発達した多細胞生物は様々な種類の細胞からなっているが、有性生殖においては、受精卵と呼ばれる一つの細胞に始まる。受精卵から成熟した個体になる過程を個体発生と呼び、元の細胞から異なる細胞が生じることを分化と呼ぶ。ただし種々に分化した細胞においても基本的にゲノムは同一であり、すべての細胞は同一の遺伝情報をもっている。これは遺伝子発現やクロマチン状態の違いに依存しているとされる。

** クロマチン(chromatin):
真核細胞内に存在するDNAとタンパク質の複合体のことを表す。クロマチンとは、元来『細胞核内の染色されやすい物質』を指す語として、ヴァルター・フレミングによって初めて導入された語。日本語では染色質と訳される。クロマチンと共によく使われる語に染色体(chromosome)があるが、染色体とは元来、有糸分裂期の細胞においてクロマチンが構造変換して作り出される棒状の構造体を指す。このように原義をたどると、chromatinが不可算名詞であるのに対してchromosomeが可算名詞であることは理解しやすい。
その後の研究の発展と共にクロマチンという語のもつ意味合いは変わってくる。クロマチンに含まれるDNAが遺伝情報の担体であると認識されてからは、その貯蔵形態としての役割が強調されてきたが、最近では、遺伝子の発現・複製・分離・修復等、DNAが関わるあらゆる機能の制御に積極的な役割を果たしていると考えられるようになってきた。
ヒト二倍体細胞に納められているDNAの総延長はおよそ2 mに達する。これを直径約10 μmの核に収納するための構造がクロマチンである。クロマチンを構築するうえで最も基本となる構造が、ヌクレオソーム(nucleosome)である。

**ヌクレオソーム
ヌクレオソーム(nucleosome)は、すべての真核生物に共通するクロマチンの基本的構成単位。 ヌクレオソームは、4種のコアヒストン(H2A、H2B、H3、H4)から構成されるヒストン8量体に146 bpの2重鎖DNAが巻き付いた構造をとる。2つのヌクレオソームをつなぐ部分のDNAはリンカーDNAと呼ばれる。この構造を電子顕微鏡で観察すると、DNA鎖上にビーズが並んでいるように見える。 アダ・オリンズ、ドナルド・オリンズ夫妻、ロジャー・コーンバーグらによって1974年に提唱されたヌクレオソーム説は、その後の遺伝子発現研究の基盤をつくった。古細菌もヒストン様のタンパク質をもち、ヌクレオソーム様の構造が観察されているが、その解析は進んでいない。

生物の世界

襟鞭毛虫

襟鞭毛虫 襟鞭毛虫(えりべんもうちゅう、Choanoflagellate)は、小さな単鞭毛の鞭毛虫で、単細胞生物の中では我々動物(後生動物)に最も近いとされる。動物門と並び、コアノゾアを構成するクレードのひとつである。 およそ50属150種ほどが記載されているという。
何故、この生物をここで注目したかというと、これが多細胞生物の共通祖先である可能性があるかららしい。襟鞭毛虫のような生物が集合して群体を造り、そのうちに個々の細胞が役割分担をするようになり、多細胞生物が生まれたというのだ。

襟鞭毛虫は小さな鞭毛虫で、体長が10μmを超える事は稀。1本の鞭毛を持っており、その基部を微絨毛が環状に取り囲んで襟 (collar) と呼ばれる構造を形成。鞭毛は水流を起こしてバクテリアなどの餌粒子を集め、これを襟が捕捉する事で摂食を行う。固着性の種は鞭毛の反対側に柄を持ち、基物に付着したまま摂食を行い生活する。
餌粒子の捕食だけでなく、自由遊泳性の種では鞭毛は細胞の遊泳にも用いられる。この時鞭毛はヒトの精子と同様に細胞の後方に向けられる。これは、他の大部分の鞭毛虫が鞭毛を進行方向に伸ばすのとは対照的であり、襟鞭毛虫が後生動物に近縁である根拠の一つになっている。襟鞭毛虫も古くは二本鞭毛であったと考えられているが、二本目の鞭毛は現在では退化しており、基底小体の痕跡が残るのみである。非常に奇妙奇天烈な生き物だね。動物門でないので動物ではないみたいだ。もちろん植物でもない。

多くの襟鞭毛虫はロリカ (lorica)といわれる籠状の殻を形成する。ロリカは淡水種では有機質のみ、海産種では有機質に加えてケイ酸質。ロリカは複雑な籠のような形態をしており、針状の珪酸パーツが縦横に組み合わされて形成されている。パーツの接合点はセメント質により接着されている。ロリカの構造は襟鞭毛虫の分類上重要な形質であるが、光学顕微鏡で形態を識別するのは難しく、同定に際しては電子顕微鏡が用いられる。
葉緑体を持つ襟鞭毛虫は発見されておらず、その痕跡器官や葉緑体DNA なども見つかっていない。だから、総ての襟鞭毛虫は、餌粒子を捕食して生活する従属栄養性。
多細胞生物である海綿動物に存在する襟細胞(choanocytes)は、襟鞭毛虫に似た構造の細胞。襟細胞は扁形動物など他の動物にもしばしば見られる事から、群体性の襟鞭毛虫が多細胞動物の起源であると考える説もある。襟細胞の他にも、珪酸の代謝経路や収縮胞の使われ方などにも後生動物との共通点が見出されている。
Proterospongia 属や Sphaeroeca volvox の巨大なコロニー(300-500μmに達する)では、コロニー内の細胞形態に分化が見られる。表層付近の細胞が鞭毛や明瞭な襟を持つのに対し、群体の中央付近の細胞は球形で襟や鞭毛、ロリカが発達しない。このような細胞形態の変化が、多細胞生物における細胞の分業体制の起源となったとする意見もある。
淡水域、海水域共に広く分布するが、細胞のサイズが小さい、色素体を持っていない、ブルームを形成しない、などの理由から人目に触れる機会は少ない。また、毒素を産生する種や、寄生性・病原性の種などは知られていない。また、襟鞭毛虫は全て従属栄養性である為、海洋においては有光層以深にも分布する。特に脆弱なロリカを持つ種は、物理的撹乱の激しい表層付近よりも、環境の安定した深海を好む傾向にある。
**後生動物
後生動物 (Metazoa)は、生物の分類群の1つで、真核生物のオピストコンタに属する。海綿動物、中生動物、節足動物、脊索動物などを含む。後生動物全体の単系統性はある程度信じられているらしい。どうも後生動物とは多細胞の動物達のようだ。植物はまた別なんでしょう。現在の後生動物は、4つのグループ(タクサ)に分類されるとの考えがある。
① 海綿動物 (Poriferia)/②センモウヒラムシ (Trichoplax) = 平板動物 (Placozoa)/③ 中生動物 (Mesozoa)/④動物 (Animalia) = 真正後生動物 (Eumetazoa)

**タクソン(taxon、複:タクサ=taxa)とは、生物の分類において、ある分類階級に位置づけられる生物の集合のこと。訳語としては分類群(ぶんるいぐん)という用語が一般的である。taxonomic unit、taxonomical groupと同義。英語では単数と複数で形が異なることがある。カタカナで書くと紛らわしい。
**オピストコンタ
オピストコンタまたは後方鞭毛生物(Opisthokonta)は真核生物の主要な系統の1つで、動物(後生動物)と真菌に加えて数グループの原生生物を含む。語源は、ギリシャ語の opistho-(後方)+ kontos(鞭毛)。
これらの生物が単系統群であることは、遺伝学および微細構造の双方の研究から強く支持されている。共有形質は、動物の精子やツボカビの胞子のような鞭毛を持った細胞が、後ろ側にある1本の鞭毛で進むことであり、これが語源になっている。対照的に、これ以外の真核生物では鞭毛を持った細胞は1本ないし複数の前方の鞭毛で進むということらしい。それじゃー、ヒトの先祖の先祖の…共通先祖は、精子のように1本の鞭毛をもっただけの単細胞生物だったのか。
**コアノゾア/
コアノゾア類 (コアノゾア類、Choanozoa)は、襟鞭毛虫類と後生動物から構成される、真核生物のオピストコンタの系統群のひとつ。襟鞭毛虫類と動物による姉妹群という関係性は、動物の起源を探る上で重要な意味を持つ。

**アーケプラスチダ
アーケプラスチダ(Archaeplastida)は、真核生物の主要な系統の1つであり、陸上植物、緑藻、紅藻と、さらに灰色植物と呼ばれる藻類の小さなグループからなる。これらの生物はみな、2枚の膜に囲まれた、したがって細胞内共生したシアノバクテリアから直接派生したと考えられるプラスチドを持っている。 共生が一回だけの植物群という意味で一次植物 (Primoplantae) という語もある。アーケプラスチダ以外のグループでは、プラスチドは3ないし4枚の膜に囲まれており、緑藻あるいは紅藻から二次的に獲得したものと考えられている(二次植物)。
細胞には通常は中心体がなく、クリステが平板状のミトコンドリアがある。たいていセルロースを含む細胞壁があり、養分はデンプンの形で貯蔵される。ただしこうした形質は他の真核生物にも見られる。アーケプラスチダが単系統群である証拠は、分子系統学的研究によってプラスチドがおそらく単一起源であることが示される、ということから来ている。 アーケプラスチダ類は大きく2つの進化系統に分かれる。紅藻はたいていのシアノバクテリアと同様に色素としてクロロフィルaとフィコビリンを持っている。一方、緑色植物(緑藻と陸上植物)はクロロフィルaとbを持っておりフィコビリンは持たない。ただ灰色植物の位置付けはよくわからない。灰色植物はシアノバクテリアの標準的な色素を持っているのみならず、妙なことにプラスチドに細胞壁が残っている。

生物の分類は、昔とは今では全く違ってしまっている。動物か植物かの二分法は全く過去の話。動物と菌類はオピストコンタで共通。植物と一部の藻類はアーケプラスチダ。どれにも属さない生物が沢山いる(たいていは単細胞)らしい。多細胞生物にたどり着くまでに、何億年もの進化の試行錯誤の歴史があったんだ。

生物の世界

眼の起源

たいていの動物は眼を持っている。不思議なことに植物で目を持っているものはほとんどいない?? 眼の起源はとても古い。古生代カンブリア時代には、かなり多くの動物が眼を有して海の中を動き回っている。このような眼の仕組みは単一起源なのか、或いは色々な動物で別々に発生したのだろうか。
眼の進化 カンブリア時代の前のエディアカラ紀の動物達、見た目には海の底にじっとしており植物と区別がつかないのですか、眼も口も手足の何もないのに。
カンブリア爆発と言われるように、今我々が知っているような動物たちの先祖が一斉に出現します。特にある程度活発に動き回る動物達は、大抵眼を持っているのが特徴です。海の中に有機物が減って、食うか食われるかの弱肉強食に時代になって、やはり眼を有していた種の方が自然選択で生き残る確率が高かったと言え訳でしょう。
眼というのは、光を感知するセンサーです。ということはカンブリア時代の海も透き通っていて太陽に光がある程度の深さまで届いたのでしょう。また、多くの動物達が陸に近い垂心の比較的浅い海で暮らしていたことでしょう。光の届かない深海では眼は発達しようもありません。
眼の進化は、簡単には図のようになります。最初は体の表面に光を感じる部分、眼点というものが出来ます(1)。眼点の位置を少し深くすると、方向が分かるように(2)。もう少し深くすると針孔写真機みたいにぼんやりした像が得られるかも(3)。ここにレンズ状の透明な物質をつければ、カメラ型に眼(4)が出来上がりです。像が移る部分を網膜と言います。網膜に移った像を処理して、情報を認知して判断して行動を起こさねばなりません。だから眼という器官はそう簡単な仕組みではないのですが。しかし、我々四足動物の先祖の魚達も、節足動物のエビの仲間も、軟体動物のイカやタコもカメラ型の眼を獲得しました。

生物の世界

ベリャーエフ

銀キツネ ドミトリー·コンスタンチノヴィッチ·ベリャーエフ (ロシア語:Дмитрий Константинович Беляев; 1917年7月17日~1985年11月14日)はロシアの遺伝学者。
ベリャーエフは、田舎の牧師コンスタンチン·ベリャーエフと彼の妻イェヴストリア·アレクサンドロヴナの4人の子供の末子として生まれる。彼の兄弟(遺伝学者、のちにスターリンによって投獄され死亡)の仕事と環境がりベリャーエフに影響を与えたる。1934年、彼はイヴァノヴォ農業大学に入学、1939年に卒業した。そののち、かれは毛皮動物の繁殖の方法と遺伝学に取組む。
1941年から1945年まで、彼は第二次世界大戦に将校としてソ連軍に従軍し、2回負傷。 戦後、彼は再びモスクワの毛皮を作る動物の飼育のための研究室で彼の仕事を再開。1950年代のはじめ、かれは野生動物の家畜化で最も重要な因子は“おとなしさ”の選択的繁殖であるという仮説をたてた。1953年と1954年の間に、彼はロシア科学アカデミーシベリア分院のノヴォシビルスクの細胞学遺伝学研究所で、キツネの飼育実験を始め、1958年に彼はモスクワからノヴォシビルスクへ移る。 スターリンの迫害を逃れてシベリアに行ったのか、シベリアに左遷されたのか。
ベリャーエフ この間、彼は研究所の評判を高め、ソ連での科学としての遺伝学の発展に尽くす。彼は多くの国の大学の名誉学位を受け、1978~1983国際遺伝学連合の総裁を務めるまでに。

【キツネの選択交配と家畜化】
1950年代に、ドミトリ・ベリャーエフと共同研究者は銀キツネ(Vulpes vulpes)のうち人を恐れず噛み付かない個体を何代も選択交配した。 その結果、彼らの振る舞いだけでなく、その外観が野生のキツネと異なるキツネの群をつくりだした。約10から20世代そのような選択交配したキツネは、人を恐れず、尻尾を振りなついた。 見かけも著しく変わった。毛皮の色が変わり、耳が垂れるようになり、しっぽが巻きあがるようになる。2019年では50世代を超え犬の様に芸をするものも現れた。

当時、生物学者は、なぜ犬の毛色がオオカミと違うか調べていた。 ベリャーエフは彼のキツネの研究がこの疑問に関わりがあるのに気がついた。彼と彼の共同研究者は生化学的な測定をし、選択交配した狐のアドレナリンの水準が野生のキツネに比べて大幅に低いことを発見した。 それによって、飼いならされたキツネの振る舞いだけではなく、毛皮の色も説明できることになる。

科学者たちは、アドレナリンがメラニン色素の生産を変え、野生の動物ではアドレナリンの高い濃度のために抑えられていた遺伝的変異の発現のカスケードが、ホルモンレベルの低下のために起こるという理論を出した。 したがって、ストレス(高いアドレナリン)の役割は、遺伝子発現の調節もあると認識された。

その他、ベリヤーイェフの他の研究のテーマは多岐に渡っている。致死的な変異の抑制、 光周性の豚の不妊治療への役割、 ミンクの毛皮の色 、放射線による作物の突然変異、シベリアに適した穀物の亜種、抗ウイルス剤の製造等。
ベリャーエフは科学教育も重んじたらしい。 1961年以後、彼はノヴォシビルスク大学細胞遺伝学の講座だけでなく、学校の生物学のクラスでも教えた。 彼は教師のためのガイドを発行し、1985年、中等教育のための生物学の教科書の編集を指導したということです。生きていればノーベル賞ももらえたかも。残念ながらお亡くなりなっているようだ。

生物の世界
inserted by FC2 system