ベリャーエフ

自然科学および社会科学の部屋

人生すべて学習の対象だ

                         管理人の所在地;埼玉県志木市館志木ニュータウン内 ;      © 2017 Studio Rabotati All Right reserved

scienceの部屋---はじめに

色々と観察し、仮説を立てて、実験などで検証する。この立場には自然科学も社会科学も区別はないと思う。なんでもやってみよう。物理、化学、地質学、生物学、経済学、社会学、宇宙、生命、数学、文学、芸術、ゴルフ理論、将棋、何でもありで行きましょう。特に最近は色々な学問の境界に属する課題が非常に面白いと思います。全体の見通しを良くするため、目次を付けてみました。興味のある話題から、別の話題に自由に飛び回って頂ければと思います。(2018.6.2)
Scienceの部屋目次
地球の歴史・生命の歴史 人類の歴史 物理の世界 化学の世界 相対性理論入門
生物の世界 数学の部屋 力学も面白い
経済の話 技術開発のお話 哲学・社会学の部屋
最近流行している言葉 熱力学とエントロピー 量子力学の世界
相対性理論入門
地球の歴史・生命の歴史…地球の歴史46億年の実態が最近どんどん分かってきている。それを学べば世界観も変わってくるはずだ。

人類の歴史…人類誕生の謎。最近研究が進んでずいぶん新しいことが分かってきました。これからの人類の進むべき道への示唆となるものの見方も変わってくると思います。ただ「人類の歴史」については「歴史の部屋」への移転も考えており、そちらからもアクセスできます。
人については、今までサルの仲間としてくくられていた類人猿たちが遺伝子から見て人とほとんど変わらないことが明かにされて来ました。人類の歴史の中には彼等も含めて考えないといけないようだ。サピエンス、ボノボ、チンパンジー、ゴリラ、オランウータンは皆人です。ネアンデルタール人もジャワ原人もね。

物理の世界…自然科学と言えばまずは物理でしょう。物理の基本を見直して見ると世の中に見方が変わるかも。物理は江戸時代は「窮理(きゅうり)」とも呼ばれていたとか。物事の真理を探究すると言う意味。

化学の世界…化学という言葉は江戸時代には舎密(せいみ)と言ったらしい。日本の近代化には不可欠な学問だったんだ。

生物の世界…生き物の世界は知れば知る程深い。一つ疑問が解決すればまた新たな疑問が。遺伝子の研究が進んで新しい知見がどんどん出てくる。今までの生き物に対する見方も、人類の進化の見方も大幅な変更が迫られているようです。

相対性理論入門…科学をやるなら一度は触れて見たい。でもどこまで分かるかな。

力学も面白い
経済の話
哲学・社会学の部屋
最近流行している言葉
技術開発のお話

裸坊達の部屋に戻る

地球の歴史・生命の歴史

目次
月の誕生 月の役割
地層累重の法則 大洪水とノアの方舟 巨大隕石による三大インパクト
地球史上最大の成功者の恐竜 地球外生命 植物は賢い
地球温暖化問題について(その1) 地球温暖化問題について(その2) 地球温暖化問題について(その3)
バッタを倒しにアフリカへ 地球上でもっとも成功している遺伝子 細胞内共生説
生物の分類 遺伝子の意志 顕生代とは
新生代とは 世界一高い山はエベレストか テチス海とは
スノーボールアース 地質時代区分 クライオジェニアン
恐竜と哺乳類 化学的風化作用 利己的な遺伝子

月の誕生

ジャイアント・インパクト説(giant-impact hypothesis)とは、地球の衛星である月がどのように形成されたかを説明する学説。いまでは、子供向けの科学の本に既に事実となったかのように登場することもある。しかし、まだ仮説の段階だ。 巨大衝突説とも呼ばれるこの説では、月は原始地球と火星ほどの大きさの天体が激突した結果形成されたとされる。この衝突をジャイアント・インパクト(Giant Impact、大衝突)と呼ぶ。激突したとされる仮想の天体はテイア(Theia)とよばれている。本説は、今では月の形成に関する最も有力な説だ。ただし、地球と月の成分構成などから疑問を唱える学者もいる。
ジャイアント・インパクト ジャイアント・インパクト説によると、地球が46億年前に形成されてから間もなく火星とほぼ同じ大きさ(直径が地球の約半分)の原始惑星が斜めに衝突したと考えられている。 原始惑星は破壊され、その天体の破片の大部分は地球のマントルの大量の破片とともに宇宙空間へ飛び散った。破片の一部は再び地球へと落下したが、正面衝突ではなく斜めに衝突したためにかなりの量の破片が地球の周囲を回る軌道上に残った。軌道上の破片は一時的に土星の環のような円盤を形成し、やがて破片同士が合体して月が形成されたと考えられている。
コンピュータシミュレーションによる推定では、このような場合では1年から100年ほどで球形の月が完成するとされている。別のシミュレーションでは、月が一つにまとまるまでの時間は早ければ1ヶ月ほどだとする結果が出ている。誕生したばかりの月は地球から僅か2万kmほどのところにあり、それが徐々に地球との間の潮汐力の影響で地球から角速度を得て遠ざかり、現在のように地球から平均38万km離れた軌道まで移動したと考えられている。ということは、月は今後もどんどん地球から遠ざかっていく運命なのかも。

古典的学説の問題点
ジャイアント・インパクト説が提唱される以前は、月の形成理論として有名な説が3つあった。
① 原始地球は高速で回転していてその一部がちぎれて月になったとする「分裂説」(「親子説」とも、要は遠心力で勝手に飛び出した)。
② 太陽系形成時に塵の円盤から地球と一緒に月が出来たとする「兄弟説」(「双子集積説」とも、これも連星系ということか)。
③ 月は地球とは別の場所でできそれが後に地球の引力に捕らえられ地球の衛星となったとする「捕獲説」(「他人説」とも、これも月と地球は連星系ということでは)。

しかし、兄弟説や捕獲説では地球のマントルと月の化学組成が似ていることの説明ができなかった。分裂説では本当に分裂が起こるほどの力学的なエネルギーがあったのかという点に疑問がある。兄弟説では地球と月の平均密度の違い(地球は5.52g/cm³、月は3.34g/cm³)を説明でない。つまり元の材料が同じならできたものも同じではないのか。捕獲説では月のような大きな天体が地球に捕らえられるような確率が非常に低いと指摘されていた。さらにアポロ計画で採取された岩石から、月の形成初期には月全体がマグマの海(マグマオーシャン)で覆われていたことも分かっており、兄弟説や捕獲説ではこれを説明できなかった。
このようにどの説もそれぞれ重大な問題を抱えていた。このため1970年代中頃にはどの説も行き詰まってしまい、困惑した天文学者のアーウィン・シャピロ (Irwin Shapiro) は「もはや満足できる(自然に思える)説明は無い。最善の説明は月が見えるのは目の錯覚だと考える事である。」という冗談を言うほどであった。

ジャイアント・インパクト説の登場
ジャイアント・インパクト説では、月の核が小さいことは、破片にマントル(岩石が主成分のため比較的低密度)が多く含まれ核(鉄が主成分のため高密度)はほとんど含まれないことで説明できる。また形成直後の月は破片が多数衝突したため高温になり表面が融解していると考えられることから、月がマグマの海で覆われていたとする証拠との整合性も高い。このように、ジャイアント・インパクト説は、前述の分裂説・兄弟説および捕獲説が抱えていた問題の多くを解決できると言われている。確かに3つの説のいいとこ取りをしている。このため、ジャイアント・インパクト説は1980年代中頃には月形成理論としてもっとも有力な説とされるようになった。そもそも初期の地球が小惑星同士の衝突で大きくなったことからしても、話の流れとしてもつじつまが最も合いそうだ。

ジャイアント・インパクト説の立証
月面の化学的な調査の結果、採取された岩石には揮発性物質や軽元素がほとんど含まれていないことが分かる。つまり、それらが気化してしまうほどの極端な高温状態で岩石が形成されたという結論が導かれる。月面に置かれた地震計(月震計)からニッケルや鉄でできた核の大きさが測定され、地球と月が同時に形成されたと考えた場合に予測される大きさに比べて実際の核の大きさが非常に小さいことが分かる。地震計を設置したということは人工地震を起こしたのでしょうね。核が小さいということは衝突により月が形成されたとする説の予測を裏付けする。つまり、この説では、月の大部分は衝突した元の天体のマントル、一部地球のマントルから形成され、核はほとんど寄与しないと考えられるからだ。衝突は当然、正面衝突ではなくかなり角度を持った衝突だったのでしょう(そうでなければどちらの天体も砕け散ってしまう)。 ジャイアント・インパクト直後には地球は全体が高温になりマグマの海(マグマオーシャン)が形成されたと考えられており、衝突した天体の核は融けた地球の深部へ沈んでいき地球の核と合体したと考えられている。 つまり、この衝突が無ければ今の地球も、今とは全く違ったものに成っていた可能性もあったということだ。

月が存在するという事実以外のこの事件の主な痕跡(証拠と言ってもいいか)も認められる。地球が明るい色の無色鉱物や中間的な岩石のタイプを地球表面全体を覆うほど十分には持っていないという事実がある。地球は、無色鉱物に富んだ花崗岩などの岩石からできている大陸と、大陸より暗い色でより金属に富んだ有色鉱物を含む玄武岩などの岩石からできている海という窪地がある。この構成の違いに加えて、水の存在が地球に広範囲に渡る活発なプレートテクトニクスを存在させることになったと言われている。さらに地球の自転軸の傾きと初期の自転の速さも、いわゆるジャイアント・インパクトによって決まったと想定される。

ジャイアント・インパクトのような出来事があった場合に本当に月のような天体ができるのかどうかは、コンピュータシミュレーションにより検証される。ジャイアント・インパクトの計算は重力多体問題と呼ばれる計算の一種で、破片が相互に重力的影響を及ぼしあうことから非常に計算量が多く、コンピュータには高い性能が要求される。しかし、1980年代後半から重力多体問題専用計算機によるシミュレーションでジャイアント・インパクトの実証ができるようになってきた。その結果、パラメータを上手く設定すると実際に月のような衛星の形成が起こりうることや、地球の自転軸の傾きなどを再現できることが示された。

ジャイアント・インパクト説の物理的問題点と新たな説明方法
ジャイアント・インパクト説にも、火星ほどの大きさの天体が地球を完全に破壊してしまわないような正確な角度で衝突し、衝突で自転軸の傾きを生じさせ、地球で活発なプレートテクトニクスが起こるようになる、というようなことが起こる確率が一見非常に低いように見えるという問題があった。この確率の低さは、地球外文明の存在の可能性の高さとそのような文明との接触の証拠が皆無である事実の間にある矛盾(フェルミのパラドックス)を説明するための証拠として持ち出されることがあった。この考えはレア・アース仮説(Rare Earth hypothesis)と呼ばれる。 つまり、レア・アース仮説とは地球は非常に奇跡的誕生した極めて特別な星だということ。科学者たちは、このような考えを嫌う。地球はは宇宙から見るとどこにでも存在しうるありふれた存在だと考えて研究を進めているはずだからだ。

つまり、月の生成説として、①~③の三つの説の問題点をクリアーできると期待されたジャイアント・インパクト説④だか、過去にこのようなことが生じる確率が低すぎるのではないか。つまり、このような確率の低い事件を事実と認めると、地球は極めてまれな奇跡の星(神の見えざる手)という結論を導いてしまう可能性があるのだ。 しかし、Edward BelbrunoとRichard Gott III は、最近の論文の中で衝突した天体はラグランジュ点 L4か L5 (地球の軌道上の、地球より60度先行した点と60度後方の点)で形成され、その後カオス的な軌道を移動し、適度に低速で地球に衝突したと主張した。この仕組みによれば、このような衝突事件が起こる確率はかなり高くなるとされる。
またジャイアント・インパクト説が分裂説と同様に抱えていた問題として、月の軌道平面(白道面)が地球の赤道面と約5度傾いているのを説明できないというものがあった。しかしこの問題も、最近の精度を上げたシミュレーションによるとジャイアント・インパクトで飛び散った破片同士の重力的な相互作用により説明できる可能性が出てきている。

複数衝突説の登場
数値計算によると、地球に火星サイズの天体1個が衝突して月は形成されたとするシナリオでは、月の成分の5分の1は地球に由来し、残る5分の4は衝突した天体に由来することになる。しかしながら、実際には地球と月の成分構成(例えば酸素同位体比)がほぼ同一であることから、ジャイアント・インパクト仮説には物質科学的な問題点も存在している。この問題を解決するシナリオとして、イスラエル・ワイツマン科学研究所のラルカ・ルフらは複数衝突説を提唱している。複数衝突説は、月は巨大衝突説が唱えるように1回の大規模衝突によって形成されたのではなく、複数の天体衝突の末に月が形成されたとする説である。この説では、微惑星の小さな衝突が20回程度繰り返され、衝突のたびに原始地球の周囲に残骸の輪が形成され、小衛星となり、こうした小衛星が合体することで最終的に月が形成されたとする。複数衝突説では、地球から多くの物質を放出するような衝突も考慮できる点や、月組成が多数の小衛星の組成を平均化した組成となることから、地球と月の物質科学的類似性の問題は緩和される。また、多様な衝突シナリオを考慮できる点から、月を形成する物理的条件もより緩いものとなる。 複数衝突説というのは、地球の生成過程と同じではないか。小惑星が衝突を繰り返し大きくなっていって地球が造られる。周囲に残骸の輪が形成され、小衛星となり、こうした小衛星が合体することで最終的に月が形成されたとする。 これって、土星の輪と良く似てないですか。土星の輪はそのうち調べて見ますが結構できたのは新しいらしい。そのうち新しい月が誕生するのかも。でも、複数衝突説では何故、水星や金星には月が出来なかったのか説明できるのでしょうか。まだまだ、謎の多い分野なんですね。

地球の衛星以外の例
2005年に発表されたRobin Canupによるシミュレーションでは、冥王星の衛星であるカロンも地球の月と同様に約45億年前に大衝突によって誕生したということが示唆された。シミュレーションによると、冥王星の場合には直径が1600kmから2000kmほどある他のエッジワース・カイパーベルト天体が秒速1kmほどで衝突したとされた。キャヌプは、このような衛星形成の過程は初期の太陽系では一般的だった可能性があると推測している。 また太陽系外惑星の形成シミュレーションによって、地球型惑星が形成される際には3個か4個に1個程度の割合でジャイアント・インパクトのような大衝突を経験し、月のような衛星を持つ可能性が指摘されている。このことから、他の恒星を回る惑星にも地球と同じような形成過程を経た月を持ったものがあるかもしれないと考えられている。

地球の歴史・生命の歴史
scienceの部屋---はじめに

月の役割

もし、地球に月が無かったら。今ある(生命あふれる)地球の存在は無かったと想定されている。月が出来たころは、地球の自転はずっと速かったらしい。1日は5時間程度しかなかったとも。月の引力のお陰て、だんだん地球の自転が遅くなり、今の1日24時間になったらしい。1日の長さは今でもだんだん長くなっているらしい。また月もだんだん地球から遠ざかっているとも。
干潮、満潮の潮の満ち干があるのも月のお陰だ。潮の満ち干には太陽の影響もあるが月の影響の方がずっと大きい。これも海の生物の進化に多大な影響を与えている。
地球は自分の公転面に対して23.5度の傾きを持っている。これはジャイアント・インパクトの際の名残りらしい。この傾きが地球に季節変動を与えてくれる。季節変動が起こるおかげて、地球全体の気温が均されてどこにでも生命が存在できるらしい。地軸の傾きが無ければ、高緯度地方は氷に閉ざされて、低緯度地方は灼熱地獄になってしまうとか。
たまたま、地球は月を持ったことで、生命が息づく環境になったようだ。

地球の歴史・生命の歴史
scienceの部屋---はじめに

地層累重の法則

地層累重の法則(law of superposition)とは、万有引力の法則に従って、地層が下から上に向かって堆積する(下にあるものほど、古い)という考え方のことである。化石による地層同定のと並ぶ、地層の新旧や年代判定を行う上での大原則だ。デンマークの科学者ニコラウス・ステノが、1669年に提唱したと言われ、次の3つの法則から出来ています。
       第1法則 地層は水平に堆積する(初原地層水平堆積の法則。Law of original horizontality)
       第2法則 その堆積は側方に連続する(地層の側方連続の法則。Law of lateral continuity)
       第3法則 古い地層の上に新しい地層が累重する

実際には褶曲や断層、大規模な地すべりなどにより、上下が逆転している場合もありますが、 それでも本来下にあった層が年代的に古いことは変わらず、慎重に地層の連続性をたどれば、その時間経過を追えると考えられます。また古い地層に褶曲や不整合が見られても、その上に堆積した地層との関係には本法則が適用でき、生痕化石やなども組合わせて各地層の年代の推定などに、使われます。
屏風ヶ浦 

【千葉県屏風ヶ浦】

確かに、これだけ聞けばこの通りなのですが、エベレストやアルプスの山の中の地層の中から、古い時代の三葉虫やアンモナイトなどの海生物の発見されることから、その場所は海だったことが分かります。そんな高い場所が海だったということは、地球全体が海に浸かっていたかというと、他のもっと低い場所で陸の生物や川や湖の生物の化石が発見されたりします。だいたい砂や粘土が水平に積もるのは海底あるいは川底しかありえません。火山灰は別ですが。また、地層に不整合が見られるのは、その時期は、そこが陸であり、浸食されたことを示しています。

そこで科学者たちは、大地がある時は隆起し、ある時は沈降するということを認めざるを得ませんでした。結局、造山運動というものがあり、大地は隆起と沈降を繰返しているのだと。でも何故大地が隆起したり沈降したりするのかは謎でした。ところで、ウェーゲナーという人が、大陸移動説(1912年)に提唱します。かれは、大西洋の両側、南米東岸とアフリカ西岸の海岸線の形が似ていること(大陸棚まで含めても)、及び、これだけ離れた場所から同種の化石が見つかることから、もともとは一つの大陸であったと想定したことがきっかけです。発表当初は、全く無視されます。巨大な大陸を動かす原動力について説明がつかなかったためです。「こんなデカい大陸がどうやって動くんだ。」でも、鉛直方向に動くのもかなり無理。造山運動があったことは動かせない事実のようですが。

現在は、プレート理論によって、大陸移動説はほぼ定説になっております。更にプレートの移動速度も実測によって、年間2cm~10cm程度と求められています。大陸の地殻はその下にあるマントルという粘性のある巨大なマスの上に乗っていて、マントルの対流に乗って大陸が離合集散を繰り返していることが分かりました。地殻の運動は、鉛直ではなく、水平がメインであったわけです。これで大陸が隆起と沈降を繰返している理由が説明できるようになって来ました。

大陸移動説のお陰で、地質時代の大陸の分布、当時の環境も良く分かるようになり、博物館の隅に展示されていた古生代の生物達も新たな脚光を浴びるようになって来ました。でも、ここまでたどり着く発端は、地層累重の法則まで遡るのです。

地球の歴史・生命の歴史
scienceの部屋---はじめに

大洪水とノアの方舟

ノアの方舟(ノアのはこぶね、英語でNoah's Ark)は、旧約聖書の「創世記(6章-9章)」に登場する、大洪水にまつわる物語で、主人公ノアがその家族、多種の動物を乗せた方舟に乗って助かり人類の先祖となるとの神話。コーランやヒンズー教にも同様の記述があるらしい。更に、源をさかのぼると、古代メソポタミア地方の文学叙事詩「ギルガメシュ」に記述あり、ギルガメシュは紀元前2600年ごろ、シュメールの都市国家ウルクに実在したとされる王と言われている。粘土版に記された楔形文字の『ギルガメシュ叙事詩』の断片の解読から、旧約聖書の洪水物語に似た記述の他、創世記のネタと見られる多数の記述が見つかっている。しかし、メソポタミア地方は、チグリス、ユーフラテスに挟まれ、洪水の頻発する地域ではあるが、人類を絶滅に陥れるような超大型の洪水があった痕跡は見つかっていない。ただし、当時一村落全体が洪水でほとんどが死に絶えてしまい、船に乗っていために生き残った人がいたような場合など、後世にこれを伝えるための伝説があってもおかしくないだろう。
ノアの方舟

欧米の地質学者達は、当初旧約聖書の無誤謬性を立証する目的から地層の研究を始めたが、意図に反して、地質学者達は次第に旧約聖書と袂を分かつことになる。創世記では、天地創造から数千年しか経ていないのに、地球の年齢は今では46億年程度と推定されている。ヒマラヤやアルプスの崖から海生生物の化石が発見されることも当初から謎であった。化石の種類が地層ごとに特徴があり、下部のものほど古そうだ(地層累重の法則)ということから生物の進化の概念も取り入れざるを得なくなる。更に、ある地域がある時代は海であったり陸であったりを繰返していたことは化石の変遷から認めざるを得なかったが、この真の原動力がプレート理論で解明されるのはつい最近のことでもある。

一方、洪水の伝説は、世界各地の民族に存在することが分かってきた。洪水の原因も氷河湖の氷のダムの決壊、大きな津波等は普通の河川の洪水よりはかなり大規模で洪水伝説にふさわしいものもあることも分かって来ている。このような洪水は地層の研究からも読み取ることが出来る。一見地味な地層の研究だが、過去の地球の歴史の真実を語ってくれる貴重な情報なのですね。下記の書籍は、キリスト教原理主義との対峙に多くのページを割いているので、我々日本人には少しくどすぎるところもありますが、地層の研究の醍醐味をうまく語ってくれています。
参考文献;「岩は嘘をつかない」David Montgomery著、白揚社

地球の歴史・生命の歴史
scienceの部屋---はじめに

巨大隕石による三大インパクト

 地球環境の変化は、地球内部からの要因に加えて外部からの隕石や彗星の衝突も大きな要因であったと言われています。もともと宇宙の塵のようなものが互いに衝突しあって大きくなって惑星が誕生したものですから、地球誕生初期には数えきれない衝突があったと想定されるます。地形に証拠が刻まれている巨大な衝突は過去三回生じたことが知られています。もっと規模の小さな衝突の痕跡は多数あるようですが。
①フレデフォート・ドーム…南アフリカ共和国にある世界最大の隕石衝突跡
②サドベリー隕石孔…カナダオンタリオ州グレーターサドベリー市にある、地球上で2番目に大きな隕石衝突跡
③チクシュルーブ・クレーター…メキシコのユカタン半島にある約6,550万年前の小惑星衝突跡。中生代の生物の大量絶滅を引き起したと原因とされている。

(1).フレデフォート・ドーム(Vredefort dome)
南アフリカ共和国にある世界最大の隕石衝突跡(クレーター)。また、現存する世界最古の隕石跡(2005年世界遺産して登録される)。隕石の衝突跡の直径は約190kmと世界最大。中央ドーム(直径約50km)とそれを取り囲む外輪山からなる。ドームの大きさは300km程度あったと推定されているが、現在は長年の侵食により50km程度が痕跡として残っている。
フレデフォート・ドーム
 約20億2300万年前に直径10から12kmの小惑星が速度約20km/sで衝突し生成されたと考えられている。衝突時のエネルギーはTNT火薬に換算して87Tt(テラトン、広島型原爆が約15kt、即ちその58億倍)と推定される。この時の衝突で地殻はえぐられ、地下25kmまで到達したと考えられている。衝突による地殻の溶解と攪拌により金鉱床が形成された。現在は、草原地帯となっており、固有の蝶、鳥、哺乳動物が生息している。また付近の川ではラフティングや沢登りが楽しめ、乗馬やハイキングコースもある。右の写真も隕石孔の一部なんでしょう。

ところで、この隕石孔のできたのが約20億年前だって。これで思い出すのは月の誕生だ。地球の周りを回っている月も、地球が誕生した頃、別の小惑星が衝突してその結果月が生じたとなっている。フレデフォート・ドームはその時の跡でしょうか。いえ、月が誕生したのはもっとずっと前らしい。でも、その時の痕跡は地球に残っているのでしょうか。

(2). サドベリー隕石孔 (Sudbury Astrobleme)
カナダオンタリオ州グレーターサドベリー市にある、地球上で2番目に大きな「アストロブレム(隕石衝突に起因する地質構造)」。地形としての「クレーター」はすでに浸食されて失われているが、生成時には直径200~250 kmあったと推定される。
サドベリー盆地 (Sudbury Basin)は、火成岩類・角礫岩類・堆積岩類がつぶれた楕円形に同心円状に並ぶ、特異な地質構造(サドベリー構造 ) をしている。その起源は18億5,000万年前 の隕石の衝突であり、クレーター地形は侵食と広域削剥で失われたが、当事の地下地質構造が現在地表に露出していると考えられている。直径約10kmの隕石が衝突してできたと考えられており、放出物は1600万km2にわたって撒き散らされ800km以上運ばれたものと推定されている。衝突によってマグマが発生し、そこから生じた火成岩類にニッケル・銅鉱山群 (ニッケル・銅硫化物鉱床) が含まれ、重要な地下資源となっている。

(3).チクシュルーブ・クレーター(Chicxulub crater)
メキシコのユカタン半島にある約6550万年前の小惑星衝突跡。 地磁気異常、重力異常、およびセノーテの分布(ユカタン半島独特の石灰岩地形)によって確認される。これらはいずれもきれいな円弧を描いており、この円の中心が衝突地点とされた。直径は約160Km。既知の地球上のクレーター(隕石衝突跡)では三番目の規模。これらを総称し3大隕石衝突、3大インパクトとも)、顕生代(5億4200万年以降つまり多細胞の生物が生まれた後)に形成されたことが確認されるものとしては最大級。この衝突が、恐竜を含む大型爬虫類はじめとする多くの生物が絶滅した白亜紀末の大量絶滅(K-T境界)の、もっとも有力な原因と考えられている。

2010年にサイエンス誌に掲載された説では、小惑星の大きさは直径10-15km、衝突速度は約20km/s、衝突時のエネルギーは広島型原子爆弾の約10億倍、衝突地点付近で発生した地震の規模はマグニチュード11以上、生じた津波は高さ約300メートルと推定されている。

巨大な隕石衝突が、過去三回。それ以外にも多数ある。ガリレオが発見した月の表面のアバタは、隕石衝突によるクレーターである。隕石衝突は今後も起こり得る。もし、そこそこ巨大な隕石の接近が予測された場合、人類は対応できるのだろうか。

地球の歴史・生命の歴史

チクシュルーブ・クレーター発見の経緯

1977年、ウォルター・アルヴァレスがイタリアにおいて、白亜紀末、約6550万年前の地層でK-T境界(中生代と新生代の境界)を発見。K-T境界は世界各地でその後発見されるが、この地層を境に恐竜を始めとして発見される化石の種類が激変することが分かった。また、K-T境界では多量のイリジウム(隕石起源のものしか見つかることが少ない鉱物)が含まれ、小惑星の衝突によってK-T層ができたという説が浮上した。
【イリジウム】
イリジウム(英: iridium)は原子番号77の元素。元素記号は Ir。 白金族元素の一つで、単体では白金に似た白い光沢(銀白色)を持つ金属(遷移金属)として存在する。「イリジウム」という名は、その塩類が、虹のように様々な色調を示す事から、ギリシャ神話の虹の女神イリスにちなんで名付けられた。
プラチナ(Pt)精錬の副産物として得られ、年間の採掘量はプラチナの生産量に依存するがわずか4トン程度で、貴金属、レアメタル(希少金属)として扱われている。 地球の地殻中での濃度は0.001 ppm(1 ppb)だが、地球内部のマントルにはこれよりはるかに多くのイリジウムが含まれている。また、隕石にも多くのイリジウムが含まれており、その濃度は0.5 ppm以上であるとされている。

フレデフォート・ドーム
つまり、高濃度のイリジウムが検出されるということは、隕石由来の可能性が高いということだ。この説が登場すると衝突跡を探す研究者が増えた。巨大な隕石が落ちたとすれば、その場所に痕跡が残っている可能性が大だ。1990年代初頭にアリゾナ大学の大学院生であったアラン・ラッセル・ヒルデブランドがハイチの山地で、K-T層に含まれ惑星衝突時の巨大津波で運ばれたと推定できる岩石を発見する。これらの岩石は特にカリブ沿岸に集中していた。しかしカリブ海には肝心のクレーターを発見することはできなかった。
この話に興味を持ったヒューストン・クロニクルの記者カルロス・ビヤーズはヒルデブランドに連絡をとり、1978年にグレン・ペンフィールドがユカタン半島で発見したクレーターがK-T層を形成したときに出来た小惑星の衝突跡ではないかという話をした。
1978年当時、ペンフィールドはメキシコ国営石油で油田発見のため地磁気の調査を行っていた。ペンフィールドは磁気データが綺麗な弧を描いていることに気付いた。そこで彼は、ユカタン半島付近の重力分布データを地図に起こした。するとチクシュルーブ(Chicxulub)の村を中心として円を描いていることに気付く。このことを発表するが大きな関心事になることは無かった。

ペンフィールドは諦めずにいた。彼は1951年から続いていた付近のメキシコ国営石油の採掘井戸の1,300m付近からイリジウムを含む安山岩がでることを知っており、これがクレーター跡の証拠と考えていた。しかし同様の岩石は火山活動でも作られることが知られており、惑星衝突の証拠として長い間否定的に見られていた。ヒルデブランドは、ペンフィールドとコンタクトを取り、油田から出た岩石とヒルデブランドの発見した岩石と比較を行い、サンプルはほぼ小惑星の衝突で出来た物と推定された。 この衝突は、フレデフォート・ドーム、カナダに残るサドベリー・クレーターと共に地球史の3大隕石衝突(3大インパクト)の1つに数えられている。

地球の歴史・生命の歴史
scienceの部屋---はじめに

地球史上最大の成功者の恐竜

恐竜は、私にとって非常に魅力的な生物だ。子供が恐竜が好きなのは当然である。私の少年時代は、円谷監督のゴジラ、ラドン、モスラ等の特撮を用いた怪獣映画が大ヒット。ゴジラは多分、最大の肉食恐竜ティラノサウルスがモデルと思われます。ゴジラは、尾を引きずってノシノシと歩行していて、当時、恐竜は冷血動物の巨大な爬虫類で動きも鈍く知能も低いと思われていた。
ゴジラ ティラノサウルス

社会人になってから、たまたま出向先から、米国に主張させてもらう機会があり、スミソニアン博物館(National Museum of Natural History)を訪問することが出来た。恐竜の骨の化石を見て、ジャック・ホナー 氏の「子育て恐竜(Digging Dinosaurs)」という英文の図書をお土産に買って帰った。ある種の恐竜は、営巣し子育てしていたことがホナー 氏の発掘から判明したのである。この恐竜は「「よい母親トカゲ」の意味のマイアサウラと命名されている。
maiasaura

その後、マイケル・クライトン原作の映画「ジュラシックパーク」及び「ロスト・ワールド」が日本でも上映され、恐竜のイメージは激変する。第一作の主役の恐竜「ベロキ・ラプトル」は、知能も高く、群れで狩りをする凶暴なハンターとして描かれている。また、恐竜は、絶滅しておらず一部は進化して鳥類になっていまも生存しているとの説も紹介されている。なお、ジャック・ホナー氏は、映画ジュラシックパークの登場人物アラン・グラント博士のモデルである。その後、中国を中心に続々と鳥の先祖らしき恐竜の発掘が続いており、恐竜が鳥に進化したことはほぼ定説になっている。

一方、恐竜の絶滅は6500万年前で、原因は従来から色々な説が唱えられて来てますが、現在では、巨大隕石の落下が主要因と言うことが定説となっています。1977年、ウォルター・アルヴァレスがイタリアにおいて、白亜紀末、約6550万年前の地層でK-Pg境界を発見。その層から隕石起源としか考えられないイリジウムという希少金属が多量に含まれていたことだ。諸説あるが、2010年にサイエンス誌に掲載された説では、小惑星の大きさは直径10-15km、衝突速度は約20km/s、衝突時のエネルギーは広島型原子爆弾の約10億倍、衝突地点付近で発生した地震の規模はマグニチュード11以上、生じた津波は高さ約300メートルと推定されている。現在その位置も特定されており、メキシコのユカタン半島の近辺とされている。

隕石の落下で、地球環境が激変し、小型の哺乳類、鳥類の先祖を除いてほとんどの大型の生き物は絶滅した。その結果、ネズミぐらいの霊長類の先祖が進化してようやく人類が誕生したわけである。隕石が落ちなければ、今頃はベロキ・ラプトルの子孫が高度な文明を発展させていた可能性もあった訳でしょうか。

地球の歴史・生命の歴史
scienceの部屋---はじめに

地球外生命

みずがめ座の方向約40光年の距離にある19等星トラピスト-1(TRAPPIST-1)という恒星に7つもの地気球型惑星が発見された(2016.5.9)。このうちの3つが特に生命の存在の可能性が高いらしい。最近生命の存在を予言させる系外惑星が次々と発見されています。系外惑星とは、太陽以外のよその恒星を周回する惑星です。夜空を見上げると無数の星々、つまり恒星が輝いていますが、あれらを周回する惑星のことです。「私たちの太陽系の外の惑星」という意味で「系外」と呼ばれます。今回のトラピスト-1は、ケプラー宇宙望遠鏡のチームが望遠鏡の装置の故障で、とんでもない向きを探すことで偶然発見されたものらしい。この恒星の質量は太陽の8%ほどしかなく、直径は木星よりわずかに大きい程度。表面温度は約2600度と極めて低温で、非常に赤い色をしている。赤色矮星という小さく暗いこの種の星は、天の川銀河内ではありふれた存在だが、その周りに惑星が発見されたのは今回が初めての例です。あまりにも平凡(銀河系内で3/4はこのような恒星)なのでほとんど注目されてなかったのですが、逆に太陽系の方が特別な存在である可能性もあるのだ。もし、こんな星にも生命が存在するなら、生命なんて宇宙でとてもありふれた存在になってしまうかも。
トラピスト-1
      3つの惑星のうち内側の2つの公転周期はそれぞれ1.5日と2.4日で、中心のTRAPPIST-1からの距離は太陽-地球間の20分の1から100分の1しかない。この惑星系のスケールは、太陽系というよりも木星とその衛星系に似ているともいえる。だから、このような至近距離にあるにも関わらず、2つの惑星が受けるエネルギーの量は地球が太陽から受ける量の4倍と2倍にしかすぎない。TRAPPIST-1が太陽よりもはるかに暗いからだ。両惑星は中心星に近すぎて、いわゆる通常のハビタブルゾーン(恒星からの距離がちょうどよく、液体の水が地表に存在できる範囲)には位置していないが、地表の一部には液体の水が存在できる領域があるかもしれないと想像されています。また、3つ目の惑星については軌道がはっきりとはわかっておらず、受けるエネルギーは地球よりも少ないと考えられているが、ハビタブルゾーンに存在する可能性があるという。トラピスト1の惑星たちは、すべて自転と公転周期が一致している。つまり、地球にとっての月と同様、常にトラピスト1に同じ面を向けているのだ。そのため、これらの惑星には常に昼の領域と、常に夜の領域がある。また、常に昼間の領域で熱せられた大気と、常に夜の領域で凍てついた大気とが対流することで激しい嵐を引き起こしている可能性もあるという。地球46億年の歴史を見ても相当激しい環境の変動の中でも生命は常に絶滅と進化を繰返して来ているのでこれらの惑星の上でも何らかの生命体が存在している可能性は否定できない。場合によっては当然人類の知恵を越えた生命体もいるはずで、人類のような生き物は宇宙の中ではユビキタスな存在なのかもしれません。ハビタブルゾーンの系外惑星は、他にもたくさん発見されているようで今後もこのようなニュースは増えて来るでしょう。
トラピスト-1

地球の歴史・生命の歴史
scienceの部屋---はじめに

地球温暖化問題について(その1)

地球大気の歴史については、まだ、確証が得られている段階ではないが、地球科学の進歩によっておおよそ以下のようなシナリオが考えられている。地球誕生から約46億年の時間が経過しているが、その中でCO2の果たしてくれた役割は極めて重要で、温暖化の悪玉のように語られるCO2はもっと尊敬を込める必要がある。

原始大気(primordial atmosphere)は、主にヘリウムと水素からなり、高温高圧だった。これは現在の太陽の大気と似た成分だ。地球が宇宙の塵から太陽とほぼ同時に誕生したことからもっともなことだ。また、水蒸気も含まれていたとの設もあるが、軽い成分は、原始太陽の強力な太陽風によって数千万年のうちにほとんどが吹き飛ばされてしまったと考えられている。

やがて、太陽風は太陽の成長とともに次第に弱くなり、地表の温度が低下したことで地殻ができ、火山が盛んに噴火を繰り返す。噴火にともない、二酸化炭素とアンモニアが大量に放出された。水蒸気と多少の窒素も含まれていたが、酸素は存在しなかった。この原始大気は二酸化炭素が大半を占め、微量成分として一酸化炭素、窒素、水蒸気などを含む、現在の金星の大気に近いものであったと考えられている。100気圧程度の高濃度二酸化炭素の温室効果により、地球が冷えるのを防いでいたとされる。実際その頃の太陽は今より小さく暗かったらしい。古い変成岩に含まれる堆積岩の痕跡などから、43~40億年前頃に海洋が誕生した想定されている。水の惑星の誕生だ。この海洋は、火山からの噴出も加えた原始大気に含まれていた過剰な水蒸気が温度低下によって凝結し、雨として降り注いで形成されたものだ。
とはいえ地球誕生から6億年頃までに2回(3回以上との説もある)も、全球凍結(スノーボール)といって、地球全体が雪と氷に覆われていた時代があったことが判明してきた。それまでは、地球全体が赤道に至るまで完全に凍結したことは、1度もなかったと考えられてきた。太陽光を熱源とする熱収支を考慮し、仮に地球全体が凍結したならば、地表はすべて白い氷雪で覆われてしまい、太陽光エネルギーの大半を宇宙空間へ反射してしまう(この状態をアルベドが高いという)ため、地表温度はさらに低下する(正のフィードバック)と考えられていた。その結果、地球史上で一度地球全体が凍結し白い氷雪で覆われれば、以後は太陽光で溶ける事はありえず、永遠にその状態から抜け出せないと考えられていたからだ。でも、実際は火山活動から噴出されるCO2の温室効果のお陰で凍結から抜け出せたらしい。地球を救った温室効果ガスということです。

一方、初期の海洋は、原始大気に含まれていた亜硫酸や塩酸を溶かしこんでいたため、酸性であったが、陸地にある金属イオンが雨とともに流れ込んで中和されたと考えられている。中和されると二酸化炭素が溶解できるようになるため、原始大気の半分とも推定される大量の二酸化炭素を吸収していったらしい。水蒸気が紫外線を受けて光解離することで酸素が生成されてはいたが、鉄などの酸化によりすぐに吸収されたため、酸素は大気中にはほとんど残らなかったと推定されている。

ところで、地球も成長していくように太陽の方もどんどん進化していく。6億年位前では、太陽の放射は現在の70%程度しかなかったと想定されている。逆に今後、太陽はどんどん大きく熱くなり、10億年位後には、巨大な赤色巨星となり、地球を軌道もろとも飲み込んでしまうものと推定される。当然その前に、地上は灼熱地獄となり総ての生物は滅亡する。その後爆発を起こして最後は滅茶苦茶高密度の白色矮星となり、一生を終わる。幸い太陽は中程度の星なのでブラックホールにはならずに人間で言えば60歳(60億年)くらい人生を全うできるわけです。

さて、火山活動の影響でCO2が、徐々に蓄積され、凍結のため海洋によるCO2吸収が無くなった地上では、膨大な量のCO2による温室効果が働き出し、凍結が解消される。太陽光が今より弱かったこともCO2のお陰で解消。やがて生命が誕生し、二酸化炭素を利用し、自ら光合成を行う生物が誕生すると、それらは海洋に蓄積された豊富なミネラルを利用し、急速に進化する。CO2を利用し水を分解して自ら栄養を造り酸素を発生する生物-植物(実際はシアノバクテリア等の微生物で植物の先祖という方が正確か)のが登場だ。植物が現れて以降は酸素は著しく増え、二酸化炭素は大きく減少する。大気中の酸素は、初期の生物の大量絶滅とさらなる進化を導く。酸素というものは、基本的には生物とって超猛毒なのだ。

さらに、二酸化炭素は生物の体内に有機炭素化合物として蓄積され(炭素固定)、長い時間をかけて過剰な炭素は化石燃料、生物の殻からできる石灰岩などの堆積岩といった形で固定され大気中から奪われていく。植物が現れて以降は酸素が著しく増え、二酸化炭素は大きく減少した。また、酸素は紫外線に反応しオゾンをつくり、これにより地表では紫外線が減少し、生物が陸上にあがる環境が整えられた。

その後、生物は酸素を元にコラーゲンという接着剤をつくることで多細胞生物が進化し、カンブリア時代の生物の大爆発を迎える。その後も、生物は進化と絶滅を繰返して現在まで来ていますが、酸素濃度とCO2濃度が、環境因子として大きな要因として働いています。中生代に恐竜が大発展し、哺乳類の先祖が大きくなれなかった原因は、当時の低酸素環境の影響が指摘されている。恐竜とその子孫の鳥類が繁栄したのは、気嚢システムという効率の良い呼吸システムを保持していたためで、鳥類のように空を飛ぶためには強力な筋肉と効率の良い呼吸システムが必要であったためだ。

*注*【コラーゲン】
コラーゲン(collagen)は、脊椎動物では真皮、靱帯、腱、骨、軟骨などを構成するタンパク質のひとつ。多細胞動物の細胞外基質(細胞外マトリクス)の主成分である。体内に存在しているコラーゲンの総量は、ヒトでは、全タンパク質のほぼ30%を占める。
コラーゲンが地球で初めて誕生したのは、原生代後期・全球凍結の後(6億〜8億年前)と考えられている。コラーゲンの産生には大量の酸素の供給が必要であるが、全球凍結以前は地球においてはコラーゲンを作り出せるだけの高濃度の酸素が蓄積されていなかった。そのためそれまでの生物の進化は単細胞生物までに留まっていた。そして全球凍結の状態が終わり、急激な気候変動の影響で大量に酸素が作られ地球に蓄積する。この影響により単細胞生物がコラーゲンを作り出す事に成功し、細胞同士の接着に利用され、単細胞生物の多細胞化が促進された。今日に見られる多細胞生物(動物・植物・原生生物・真菌類)は全てこのコラーゲンの生産に成功した種の子孫であると考えられている。ただしその子孫である植物は細胞間接着にコラーゲンを用いず、セルロースを用いており、コラーゲンを細胞間接着として利用している生物は動物と一部の原生生物に限られている。
現在、酸素濃度は回復しているようですが、CO2濃度は、高々0.03~0.04%となっており、地球の歴史から見ると異常に少ない量だ。現存の植物たちにとっては絶対的に不足だ。植物たちはこの希少な資源を効率良く取りこむため、涙ぐましい進化上の努力をして来ている。環境問題においてCO2は単なる悪役では無いはず。CO2の増加を問題にするには、C、O、N等主要元素の大循環に関する詳細な研究が欠かせません。

地球の歴史・生命の歴史
scienceの部屋---はじめに

地球温暖化問題について(その2)

地球の歴史を見れば、地球環境は著しい変動を繰返したことが知られています。地球誕生時点では、火の玉だった地球、その後だんだん冷やされて来て、一次は全球凍結(二~三度あったらしい)、その後火山ガスから排出されるCO2のお陰で、温暖化されて、生物が誕生する。当時太陽からのエネルギーの供給は今より遥かに小さく、70%程度と見られています。一方、空気のような軽い成分は、どんどん地球から逃げていくので、当初は100気圧位あったものが、現在では1気圧しかありません。現在我々を取巻いている大気、饅頭の薄皮程度しかないのです。この意味をもう少し、説明すると地球は青い水の惑星といわれますが、海の水深をざっと平均すると2000m程度でしょう。すると海底の水圧は200気圧程度。圧力とは上に載っている水や気体の単位面積当たりの質量ですから、大気は海水と比べて1/200の質量しか存在していないのです。
また、超長期的には、太陽は間違いなく巨大化して、10億年後には地球を飲み込んでしまうことも予想されている。天文学でいう赤色巨星の段階になる訳。  人類の歴史が始まっても、地球の環境は厳しい変化の手を緩めてはくれません。氷河時代、旧石器を獲得した人類は、マンモスなどの大型動物を追って世界中に広まりました。大型の動物も寒冷に適応して大型化していたからです。つまり、寒冷化で森林が減って草地が増えたのです。やがて、新石器時代になり、人類は小型の動物や木の実、草の実を食料にするようになります。つまり大草原が減って森林が増えてきたのです。ほとんどの大型動物は、気候の変化か人類が食べつくしたかで滅亡します。日本では、縄文時代。この時代、今より遥かに暖かい。埼玉県の真ん中近くまで、海が進んできます。恐竜が絶滅した後、気候は氷河期と間氷期を目まぐるしく繰り返しており、今はちょうど間氷期に当たるとされています。従って、1970年代には「地球寒冷化」の可能性の方が心配であったのです。

地球の大気は、本当に薄くて脆弱なもの。ちょうど薄皮饅頭の皮みたいなものです。火山の爆発、隕石の衝突などで、すぐに気候は変化してしまいます。その要因の一つに人類の活動が入る可能性が出て来たわけです。地球上のほとんどすべての元素(炭素、酸素、窒素、水素等)は、生物や地球自身の活動で循環しています。植物が水と二酸化炭素と太陽光を利用して、炭水化物を合成する。炭水化物は窒素を付加してタンパク質をつくり、それが細胞のもとになる。動物は、植物を食べることで、たんぱく質や脂肪を作り出す。植物はCO2を吸収する過程で酸素を放出する。もし、CO2が無くなると、植物は死滅し、酸素は作られなくなってしまう。動物植物の死骸は微生物によって分解されて、CO2は再度大気に放出される。分解されなかった部分は、当面は循環から取り除かれる。古生代の石炭紀には大量の植物がそのまま石炭となって保存される。また、石油も同じように循環から取り除かれた炭素です。
 炭素の循環は、これだけに留まらない。火山からは、大量のガスが放出され、かなりのCO2を含んでいる。一方、雨水はCO2を溶かし込み、カルシウム等の金属と結合し、海に流れ込む。これをサンゴなどの生物が取りこむことでCO2を固定することが可能になる。今まで地球は、これらの循環が負のフィードバックシステムを構成し、多少の変動(人類から見ると結構激しいものだが)を許しながらもバランスを保って来たものと言えます。

現在、地球温暖化で一番問題になっているのは、化石燃料の消費だ。化石燃料の消費は、過去に生物によって蓄積された炭素をCO2として一気に大気中に吐き出すことだ。これによって自然の負のフィードバックシステムが維持できるか、あるいは正のフィードバックに変化し、止めもなく温暖化が進むのか。今、気温が上がっているように見えるのは何が原因か。今後、気温が逆に下がっていく可能性は。大気中に含まれるCO2は、0.03~0.04%しかない。過去のアイスボール時のCO2の量とは桁が3つも4つも違っている。CO2は、本当に温暖化の犯人なのか。多分因果関係は、複雑なので分かっていないと思われます。温暖化をアピールする人たちは、過去の気温のデータや自然災害(温暖化のせいにする)を元に主張するのだが、未だ懐疑派を十分説得できる説明は出来ていない。それが出来るようになってからでは、手遅れだというのが彼らの主張ですが。

地球の歴史・生命の歴史
scienceの部屋---はじめに

地球温暖化問題について(その3)

 地球の大気は、地上に1気圧の圧力を作用させている。これは10mの水柱に相当する。また、これは地面の上にある大気の質量の合計に比例している。一方、水の惑星地球の海は平均水深2000mで一様に分布しているとすると、陸地は無くなり、2000m水深、つまり2000mの水柱の圧力が作用していることになる。大気圧は水圧の1/200です。また、地球の半径は約6,400km。コンパスを使って地球の絵をかいてみよう。まず半径64mmの円を描く。これが地殻、マントル、核を含む地球の固体部分である。次に海を描く。64mmに海の部分0.02mm加え、64.02mmの円を描く。次に大気、この半径に半径はこれにこれは大気を水の質量比でもあるため、2mmの1万分の一の大きさで円を描く。出来っこない。あまりにも小さすぎるのだ。これを見ると分かるように地球は大部分が固体。薄皮まんじゅうの皮のような海があり、その厚さの1/200の質量からなる、きわめて薄い大気の層がかろうじて引っ付いている状態なのです。これを見るといかに地球の大気が脆弱かが分かるとでしょう。地球誕生の頃は100気圧ほどあった気体は、地球の引力を振りほどきどんどん宇宙空間へ逃げていくので、今ではその1/100の1気圧ほどしか残っていないのです。

 CO2は、この大気の成分の中のわずか0.03~0.04%です。この極めて微量なCO2が今後地球の大気にどのような影響を与えるというのでしょうか。今、現在の文明は過去の生物達が気の遠くなる時間をかけて蓄積してきた地球の構成元素を技術の名のもとに一気に解放している状況です。地下に眠っている石炭、石油は地球に酸素が少なかった時代に酸化されずに地下に蓄えられた炭素化合物です。鉄やその他の金属元素も微生物の活動で蓄えられた資源と言うことが分かって来ています。世界各地にみられる縞状鉄鉱石がほとんどの鉄資源の原料となっています。今、人類は過去の蓄積を使い果たそうとしています。酸化還元反応では、元素を還元するには微生物の働きが重要です。人間は酸化を進めることは得意でも還元を進めることは不得意のようです。生命の科学をもっともっと勉強することが必要なのでしょう。

ところで、今の温暖化対策の国際的枠組みでは、このような元素の循環にかかわる真剣な議論は余り行われていません。専ら政治的な駆け引きが中心です。それと政治がらみプロパガンダ的な学会活動が目につきます。先進国の最大の目標は、排出権取引の市場の確立です。先進国が後進国にCO2の削減技術を提供するとその削減効果を自国の削減量に加算でき、その分自国の削減目標は小さくて済むといった枠組みです。また、技術そのものも何らかの補助金があれば売り込むことが可能です。CO2の削減技術を沢山開発してきた先進国には有利です。欧米日本もこの流れにあやかりたく国内でも相当PR活動を続けて来ていますね。ところが、例えば中国は、日本が公害防止に資金援助しなければ日本へ排気ガスを垂れ流すぞと恐喝に近い論理で途上国に有利な枠組みに変わりつつあります。実際、中国の工場の排気ガスは国内のみか日本の西日本地区一帯に被害を与えているのが現状です。英国はクライメート疑惑事件以降、あまりもうからないと悟り既にCOPの枠組みからは一歩引いた姿勢、アメリカは当初から枠組みに乗ることはしていません(オバマ大統領の時少し積極姿勢を見せたが)。

このようなことから、地球温暖化対策の将来は決してバラ色ではないようです。しかしながら、地球システムは大規模で複雑です。人類は化石燃料の消費を簡単には止めることは難しいでしょう。今の原子力はそれに取って代わるにはあまりにも危険です。核融合のような新しい原子力技術が確立されるのはまだまだ先でしょう。バイオの技術ももう少し時間がかかりそうです。今できること、2つだけ挙げておきます。一つは海の酸性化の防止です。海は大気の200倍の容量があります。海が酸性でなければCO2のかなりの量を吸収してくれます。漁業資源も確保できます。もう一つは、砂漠などの乾燥地の緑化です。植物はCO2を固定してくれ、酸素を増加してくれます。大陸内部では砂漠化は今も進行しています。水資源も決して豊かではありません。このように地球規模の対策こそ長い目で見た温暖化対策になるのではないでしょうか。
気候温暖化
左に示すのは、過去100年間の気温の変化です。グラフ全体を見ると、直線的に気温が上昇しているように見られます。しかし、1990年以前は、平均よりも下回っており(0.0が平均)、実際に平均より上昇しているのは1990年以降だけ。その上昇量わずか0.2℃、平均値は分かりませんが、縦軸を絶対温度でとれば、温度変化は0.1%以下でしょう。変化量を大きく見せるための操作としか思えません。過去1000年ぐらいの変化はどうだったのでしょうか。異常気象や災害が発生すると温暖化に結び付けられます。逆に南極大陸で例年よりも雪が多かった等のデータは無視されます。海や陸の生態系の変化というような地味なデータをウオッチしていくことの方がはるかに重要だと思うのですが。

地球の歴史・生命の歴史
scienceの部屋---はじめに

地球上でもっとも成功している遺伝子

現在、地球上でもっとも成功をおさめた生物の遺伝子は。残念ながら、これはホモ・サピエンスではないようだ。もっとも繁栄している遺伝子は、なんとイネ科の植物、とりわけ小麦、次に稲の遺伝子ということになるそうだ。この考えは、「サピエンス全史(著者;ユヴァル・ノア・ハラリ)」に記載されている。  確かに、地球の生態系において量的には植物は動物を圧倒するし、動物の繁栄は植物なしではありえない。恐竜絶滅後の地球では花の咲く被子植物が繁栄し、イネ科の植物はかなり環境にも適している。

農耕開始以前の人類の生活レベルは、従来から想像されていたような悲惨のものではなく、かなり豊かなものであったことが最近の研究で分かってきている。何せ狩猟民族は労働時間が非常に少ない以外にゆとりのある生活を送っていたらしい。農耕を開始してから人類の数は非常に増えた。人類は集団で定住して住むようになり、貧富の差、身分制度が生まれ。世界中で戦争が多発するようになる。小麦への依存に取りつかれた人類は、もう元には戻れず、森を焼き尽くし、多数の生き物達(平和に暮らしている狩猟民を含む。)を絶滅に追いやり、ますます小麦の農地を広めていった。稲も同様である。
     このようにして、イネ科の植物は、人類を完全に支配下に置き、小麦を口にするための過酷な労働を未だに強いている。工業化社会になったといっても、人類の食糧は変わっていない。過剰に穀類に依存した食生活は、体に悪いことも分かってきている。肥満、糖尿病、精神の病、腰痛等様々な病気が農耕を開始するようになってから現れてきた。 参考文献;サピエンス全史(著者;ユヴァル・ノア・ハラリ)

地球の歴史・生命の歴史
scienceの部屋---はじめに

植物は賢い

植物は、おおよそ6億年位前から動物とは全く別の形で進化してきた。10億年~4億年前の期間に植物が下した決断は動物とは正反対のものであった。まず、自分の栄養は自分自身で確保する。一方の動物達は他のものを食べることで、初めて栄養を確保できる。
 動物たちは、必要な栄養を見つけるために移動することを選択するが、植物は動かないことを選択し、必要なエネルギーを太陽から手に入れることを学んだ。
 その結果、地面に根付くことによる様々な制約に対抗するため、遺伝子を組換え、外敵からの破壊を免れることを学んでいく。
 動物が危険にさらされた場合にとる行動。基本的には逃げること。でも環境が変化していく際に、単に逃げるだけでは問題の先送りで、何ら抜本的な対策になっていない。動けない植物たちは、環境のわずかの変化を事前に察知して、体のつくりを改良し地球上のあらゆる環境に適応して来た。動物たちは植物の変化に追従して後追いで進化するのだ。また、動物たちに体の一部をわざと食べられることで、種子を運んだり、保護してもらったり。動物たちを匠にコントロールしてきている。
 移動することを生業とする動物達は、体の作りを分業化して、心臓、胃、腸、手、足、目、耳、脳と色々な器官を発明してきた。しかし、地面にへばりついて食べられることにもじっと我慢の植物たちは、全く正反対の進化を発明してきた。植物に心臓があったら、動物にガブリと心臓を齧られたら万事休す。コントロールセンターの脳も同じだ。植物の体は根、茎、葉位しか区別がなく、どれも再生可能。そもそも寿命という概念もはっきりしない。
 では、植物は頭が悪いかというと、未来を予測して速目速目に適応し、周りの動物や環境まで変化させてしまう。どうも、植物には脳という中央集権型の頭脳はないものの、体中に分散している何かのネットワークを巧妙に使って外部からの情報を取り込み処理しているようだ。ちょうど、今の世の中のインターネット網全体で情報を処理しているみたいなものらしい。
人類が誕生してからは、植物は人を利用して繁殖する戦術を意識的にとっているようだ。例えば、メソポタミアの肥沃な三角地で農業が始まった原動力となった小麦。野生の小麦は本来熟して実がなったら、それを地面にまき散らす性質だった。でも、地面に撒き散らかされた小麦の粒は拾うのも大変。そこで、小麦自ら実が熟しても穂から落ちないように変化して、人に食べてもらうように進化したらしい。なんせ穂についた小麦を食べるような動物は人しかいないのだから。米やトウモロコシも同様で、今や世界の食料の6~7割はこの3つの穀物で賄われているといる。これらの穀類は一度口にすると人はそれに重度に依存してしまい後戻りできないという特性を持っていて人類をうまくコントロールして子孫を増やすことに大成功している。
一方、穀物ではないが、アメリカ大陸原産の唐辛子にはカプサイシンという強烈な痛みを伴う化学成分が含まれており、これも一度口にすると依存状態を造り出す。世界中に激辛料理のマニアがおり、ポケットの中にいつも乾燥した唐辛子を持参してどんな料理を食べる際にも一緒に口にするという。こんなものも人以外の動物は絶対に口にしないので、人間に特化して進化したものらしい。
このように考えると、植物というものは大変高度な知性を持った得体のしれない宇宙人に近い存在なのかもしれない。
今まで述べたことをまとめてみよう。
光合成動物
1.動かないこと
2.栄養は自分で確保(光合成と根からの養分吸収)
3.植物は生産するが動物は消費する
4.動物はCO2を発生するが植物はCO2を吸収する
5.動物は植物がないと存在できないが、植物だって巧妙な方法で動物を利用している
6.動物の体の機能は集中型だが植物の体は分散型
   つまり→中央集権型の社会とネットワークで結ばれた分散型社会
7.寿命と言う意味では、死なない体
8.環境の微小な変化を事前に察知し、巧みに適応する。
9.動物の行動をコントロールする知恵
10.化学的な手段で天敵(動物/植物)を撃退し、支配する
11.植物とは人間(動物)とは全くかけ離れた存在(発想が逆)
12.人は植物から多くのことを学んできたが、これからは更に多くのことを学ばねばならない

地球の歴史・生命の歴史
scienceの部屋---はじめに

細胞内共生説

動物も植物も元を辿れば共通の単細胞の微生物から始まったと考えられている。今の動植物は真核細胞といわれるものが集まってできています。真核細胞は、中心に核があって、他にミトコンドリアや葉緑体等いろいろな役割を持った組織を持っています。さらに驚くべきことにミトコンドリアや葉緑体は、その生物の遺伝子といわれる核の中のDNAとは異なったDNAを独自に持っていることが分かってきたのです。
そのため、大きな微生物が、自分より小さい他の微生物を食べ、食べられた微生物がたまたま消化されずに生き残って、共生を始め今の真核細胞(普通の動植物の細胞)が出来上がったというのが現在の定説となっているようです。
でも、食べられた微生物が消化もされずに生き残ったという話、チョットできすぎみたいな話ですね。あるいは、消化されたもののDNAだけが生き残って細胞の中で再生したのか。微生物間でDNAが交換されて新たな細菌が生まれるなんて言うこともあるらしいし。 でも、食べると言っても、多細胞の動物たちがするように、相手を殺して、噛み砕いて、消化液で溶かして消化するわけじゃない。相手の細胞を丸ごと包み込んで取り込んでしまう訳。そう考えればあり得ない話でもなさそうだ。
微生物の世界も食うか食われるかの世界だったのか。動物の祖先も植物の祖先も食う側だった。どちらも同じ先祖から出発して、一方は葉緑体をたらふく食べて植物に進化し、一方はミトコンドリアだけしか食べなかったので動物になったという訳か。最初の微生物にとって酸素は猛毒。だから、植物の先祖たちは葉緑体やミトコンドリアを環境保護のためひたすら食べまくる。そのうち食べられる方も何とか生き残りをかけて進化したということか。生物の進化のストーリーは、最初から奥が深い。

地球の歴史・生命の歴史
scienceの部屋---はじめに

生物の分類

生き物は大きく分けて動物と植物に2分される。これ今のお年寄りにとっては常識。でも、今の子供たちにとっては、キノコなどの菌類は動物にも植物にも入らない別のカテゴリー。ある程度常識。でも、実際には動物なのか植物などかわからない生き物沢山いて、生物の分類は結構ややこしい。数学のようにAかAでないかのように完全に2分される性質のものでないから当然人為的な線引きが必要だ。
現在では、生物の分類は
   ドメイン、界、門、綱、目、科、属、種、(亜種)
の8段階で行われるものとなっているそうだ。たとえば、ライオンは
真核生物ドメイン→動物界→脊椎動物門→哺乳綱→食肉目→ネコ科→ヒョウ属→ライオン
となる。同じように人の場合は、
真核生物ドメイン→動物界→脊椎動物門→哺乳綱→霊長目→ヒト科→ヒト属→ヒト
となるのか。ヒト科には、人間、チンパンジー、ゴリラ、オランウータンが含まれている。
ちなみにライオンは、学名でPanthera leoとするのが正式名称。ラテン語で表記。前半が属の名前、後半が種の名前。パンテラは英語のパンサー。ヒョウだ。レオはライオンは分かるね。手塚修の漫画ジャングル大帝の主人公だ。
ライオン・レオ ネアンデルタール人はヒト属ヒト(ホモ・サピエンス)だ。種としては現生人類と同じだ。違いは亜種程度。人とチンパンジーは遺伝子の違いでは1.6%程度。生物の分類法から見ると人は決して特別な存在ではないことが明白だ。学名を考案したのはスェーデン人のリンネという人。ラテン語を使ったのは当時のヨーロッパ人としては各国公平にという理念からだろう。ラテン語は当時古語なので時代によって変化しない利点もあったのですが。今なら漢字を使えばもっと便利にできただろうに。
 リンネの時代は生物の見た目、形、もう少し進めば解剖学的な差などが分類の主な基準でとならざるを得なかったでしょうが、今は遺伝子解析が進み、どちらが先祖か、あるいは共通の先祖がいたかなどで、系統分類が主流だ。遺伝子を調べることで今まで分からなかったことがいろいろと明らかになりつつあります。例えば恐竜の一部が進化して鳥となったとか、哺乳類の先祖は恐竜とは別の爬虫類(単弓類)だったとか。ほかにも細かい分類ではもっとたくさんの例もあると思います。
実際、門から後は我々が過去の学んだ分類結果はそんなに変わっていないと思います。変わったのは菌類だけか。ちなみに
マツタケ;真核生物ドメイン→菌界Fungi→担子菌門→真正担子菌綱→ハラタケ目→キシメジ科→キシメジ属→マツタケ(種)
シイタケ;ハラタケ目→キシメジ科(もしくはホウライタケ科)→シイタケ属→シイタケ(種)
酵母(イースト);菌界Fungi→子嚢(しのう)菌門または担子菌門→後はいろいろな属のものがあるみたい。

ドメイン 界より上のドメインに至っては、もっとドラスチックな考えの変化がある。上で説明した生物はすべて真核生物ドメインの生き物だ。ということは、残りは細菌の仲間だ。ドメインは大きく3つ分かれる。真正細菌、古細菌、真核生物だ。真核生物だけがコラーゲンという物質で細胞同士をつなぎ合わせることに成功して、多細胞生物を形づくることに成功。真正細菌というのは聞くのも嫌な病原菌の仲間が多い。でも生き物の体の中で役に立っている細菌(腸内細菌等)も多いのであまり邪険にしてもいけない。この3つのドメインの中で今後最も注目されるのは古細菌である。古細菌は、温泉の硫黄に満ちた高温環境とか、極端に塩分が多く他の生物がすめない環境とか、深海の熱水鉱床の周りとか、今まで我々の住んでいる環境とは無縁の場所で細々を生命を維持している特殊な生き物と思われており、今まであまり研究の対象にはなっていなかった。古細菌の名前の通り、過去の遺物のように思われていたのだが、よく考えてみると彼らの住んでいる環境は、生命が生まれた当時の環境に近く、彼らの存在は、進化の脇道どころが進化のメインストリート。しかも、遺伝子的には、真正細菌よりも真核生物により近縁らしいといわれるようになってきている。古細菌のあるものが、真正細菌を捕食して、その遺伝子を取り込み真核生物が誕生したという仮説だ。生命の起源についてはまだまだ解明までの道は遠いみたいだが、ますます面白くなりそうですね。

地球の歴史・生命の歴史
scienceの部屋---はじめに
【追記】

ネアンデルタール人は、氷河時代にほぼヨーロッパ全域で生息していたようだ。アジアでは、これに変わるものとしてデニソワ人などが発見されているがまだ詳しいことは分かっていないようだ。一見環境にも適応し、遺伝子的にも現生人類として知られるクロマニヨン人と変わらないのに、何故後からやってきた少数派のクロマニヨン人たちに取って代わられたのか、詳細な点はいまだに謎に包まれている。
ネアンデスタール人  また、アジアではもっと早い時期に北京原人やジャワ原人などの化石も発見されているが、その後どうなってしまったのでしょうか。 ネアンデルタール人;真核生物ドメイン→動物界→脊椎動物門→哺乳綱→霊長目→ヒト科→ヒト属→種;ホモ・サピエンス→亜種;ホモ・サピエンス・ネアンデルタレンシス ネアンデルタール人の遺伝子は少しだが現代人にも受け継がれていて同じ人類として多少の交配もあったようです。一方、北京原人やジャワ原人は種がホモ・エレクトス・エレクトスになっている。

地球の歴史・生命の歴史
scienceの部屋---はじめに

遺伝子の意志

遺伝を考えるうえで遺伝子の役割が急に大きくなっていきました。遺伝子は生命の設計図。遺伝子の上にはA、T、C、Gの4つの文字だけを使ってすべての情報が書き込まれている。3文字で一つの情報、これをコドンといいます。3文字で1つの意味を持つので、1つのコドンで64通りの意味を持たせることが可能です。 この仕組みはコンピュータのしくみと全く同じです。コンピュータは0と1しか識別しませんが、これを6文字で1つの意味を持つとすると、26=64通りの意味を持たせることが可能です。4つの文字はDNA鎖上の塩基の種類(A、T、C、G)に対応しており、通常、1つのコドンは1つのアミノ酸を表します。コドンの連なりはアミノ酸の連なりに対応し、アミノ酸の連なりが一つのタンパク質を決定します。生物に必要なアミノ酸は20種類知られており、遺伝子のコドンの数ははるかに多いので、アミノ酸の生成以外にもっと重要な役割があるのではないかと考えられますが、今のところまだよく分かっていないようです。
ドメイン ドメイン
 遺伝子は何故か、2重螺旋構造となっており、AとT、CとGがペアーとなって2本がつながっている。生物の設計図と言う役割だけなら本来1本あれば十分なはず。この2本あるということが、生物の性の起源であることは明らかでしょう。DNAが半分に分かれて1本がメスから1本がオスから、合わせて2本となって新しい遺伝子が出来るわけです。 もし、遺伝子のコピーが正確で基(もと)と同じなら、遺伝子は全く変わらず、生物の進化は起こらないはず。ということは、DNAの構造は、初めから突然変異による組換えが自然界で頻繁に生じることを前提に作られているということでしょう。性の分化ということは、突然変異の結果を効率良く次世代に伝える仕組みということですね。環境が変化するごとに遺伝子の組換えが生じ、生物が適応して進化していく。遺伝子は環境情報を素早く取り込み学習しながら地球上のいろいろな生物の遺伝子を組換え進化を促しながら、生命全体としてのサバイバルを図っている。地球上の生命は、植物も動物も人間もすべて、DNAという化合物の意志の通りに進化して、その命令の通りに生きている存在なのかもしれません。地球全体が一つの生命体。これはガイアの思想と一脈通じるものがありますね。

地球の歴史・生命の歴史
scienceの部屋---はじめに
【遺伝子の解読】

ゲノム解析技術の進歩で、いろいろな生物の遺伝子の塩基配列はかなり解析されてきています。遺伝子の解析は、言語学者が言葉を解析するのに良く似ています。DNAはデオキシリボ核酸という化学物質です。長い紐(ひも)状につながって染色体という構造を作り上げています。ヒトのDNAには、約2万2千個の遺伝子があるといわれていますが、それ以外の大部分は「遺伝子でない部分」です。これらの遺伝子各々が単独であるいは複数の組合せで遺伝情報を発現することが分かってきています。遺伝情報の集まりをゲノムと称するようです。だから、遺伝情報は言語でいえば単語あるいは句や節のようなもの。単語を形づくる文字はコドンでしょう。遺伝子は細胞毎に発現したり眠ったままだったり。全体を理解するには文法や修辞法などの理解が必要でしょう。コドンのつながりとしての遺伝情報は、RNAにコピーされ、対応するアミノ酸(20種類)を並び替えて、タンパク質を作ります。タンパク質は、体や細胞の中で酵素やホルモンや組織の一部となって色々な役割を果たします。だから、生物全体から見るとタンパク質そのものが単語みたいなものかも。ゲノムの世界はまだまだ奥が深いようだ。

地球の歴史・生命の歴史
scienceの部屋---はじめに

顕生代とは

顕生代(けんせいだい、Phanerozoic eon)とは、地質時代の区分のひとつで、先カンブリア時代の終わりから現在までのこと、すなわち約5億4200万年前から現在までの期間をさす。「肉眼で見える生物が生息している時代」という意味だが、実際には三葉虫などの生物化石が多数産出し始めるカンブリア紀以後を指す。顕生代は古生代、中生代、新生代(現代も含む)を全部含むが、地球の歴史46億年と比べると高々1割チョトしかない。つまり、地球という惑星で目に見える形の生物が存在している期間は極めてわずかしかない。古生代、中生代、新生代と生物の進化は面白いが、実はその前に40億年以上の先カンブリア時代と言う壮大な長い歴史があるんですね。
顕生代
先カンブリア時代は冥王代・始生代(太古代)・原生代の3つの累代に分けられるとのことであるが、40億年くらい前には、すでに最初の生命は誕生していたらしい。ただ、化石による証明も難しい時代、実態の解明はまだまだのようです。
顕生代
先カンブリア時代は冥王代・始生代(太古代)・原生代の3つの累代に分けられるとのことであるが、40億年くらい前には、すでに最初の生命は誕生していたらしい。ただ、化石による証明も難しい時代、実態の解明はまだまだのようです。

地球の歴史・生命の歴史
scienceの部屋---はじめに

新生代とは

新生代(英語: Cenozoic era)とは、現在我々が生きている時代。約6,500万年前に巨大隕石が地球上に落下し、沢山の生命が絶滅した5大インパクトの最後の絶滅が終わって、地球上の生態系の再構成が進行中の時代だ。地球の歴史46億年から見ると6500万年というのは1/71程度のごくごく短い時間。陸上では恐竜、海中ではアンモナイトと海生爬虫類が絶滅した後、哺乳類と鳥類が繁栄しつつあることが特徴だ。
>新生代
新生代は、第四紀・新第三紀・古第三紀の3つの紀に区分されるとのこと。また、新第三紀と古第三紀を合わせた地質時代を、非公式な用語として第三紀と呼ぶ(四があるんなら三も欲しいから)。
しかし、新生代の時代区分(世)の名前は、とても覚えにくい。とりあえず、先頭のもしだけ並べてみよう。暁、始、漸/ 中、鮮/ 更、完となる。
地球環境の特徴としては、中生代の初めに分裂した超大陸の移動がかなり進む。大陸の分布が大幅に変わってくる。当然気候も変化する。特に注目すべきはインド大陸がアジア大陸に衝突し巨大なヒマラヤ山脈が生成されたこと。隆起しつつあるヒマラヤ山脈では高山に対する激しい浸食による岩石の風化が継続している。また、約350万年前に南北アメリカ大陸の間にパナマ地峡ができて、大西洋と太平洋が分離される。
新350万年前に南北アメリカ大陸の間にパナマ地峡ができて、大西洋と太平洋が分離された。
中生代の地球環境は温暖であったが、新生代に入ると地球は寒冷化。南極大陸に氷床が発達し氷河期に入る。従って、現在も氷河期。本当に温暖化なんて問題なのかね。動物は、新生代の始まりであるK-T境界(白亜紀―第三紀の堺)を境に中生代に栄えた大型爬虫類の多くが絶滅し、地上は哺乳類と鳥類の適応分散が始まる。植物では中生代白亜紀に生まれた被子植物(それまでの地球は花も実もない世界だったのか)が全世界に広がる。
古第三紀(暁新世、始新世、漸新世)
約6500万年前~約2300万年前
気候は温暖であった白亜紀半ば以後徐々に低温化。約3400万年前の始新世と漸新世の境界時代に南極大陸に巨大な氷床が形成された。これ以後が現在も続いている新生代後期氷河時代である。
新第三紀(中新世、鮮新世)
約2300万年前~約258万8千年前
新第三紀は次の第四紀との境界は議論が多く、現在のところ約258万8千年前までとされている。古第三紀に隆起し始めたアルプス山脈やヒマラヤ山脈が新第三紀には高山なる。特に雨量の多いヒマラヤ山脈では激しい浸食が起こって大量のカルシウム塩が海に供給される。このカルシウム塩が効果的に二酸化炭素を吸収したため大気中の二酸化炭素量が史上最低のレベルまで低下した。ということは、現在盛んに議論されている温暖化対策はCO2を削減するだけでなく、カルシウム塩の循環を研究しないといけないようだ。約1200万年前から更に寒冷化が進行し約350万年前には北半球にも氷冠が形成される。
新第三紀前半の中新世には、現代の哺乳類のほぼすべてのグループが出現。また種の数や個体数も現在よりも多かったらしい。樹上生活の真猿類の中から類人猿が出現。偶蹄類の適応放散が進みイノシシ、ラクダ、シカ、ウシ、キリンがオーストラリアと南アメリカを除く世界中に広がった。長鼻類のマストドンも現在のゾウの分布よりはるかに広い範囲に生息した。食肉類はイヌ、ネコ、イタチ、クマがそろった他、アシカ、アザラシ、セイウチなどが生まれた。この真獣類の繁栄は新第三紀後半の鮮新世にも続き、ほぼ現在見られる動物と同じタイプの生物が勢ぞろい。約350万年前にパナマ地峡ができて、それまで他の大陸から離れていた南アメリカ大陸と北アメリカ大陸がつながる。それまで南アメリカで繁栄していた有袋類はオポッサムを例外として北アメリカからやってきた真獣類との生存競争に負けて姿を消す。
植物界では約700万年前に新しい光合成システムを持つ植物が現れる。光合成はシアノバクテリア以来カルビン回路と呼ばれる合成方法が唯一のものであったが、低濃度の二酸化炭素を効率よく利用できるC4型光合成を有するトウモロコシやサトウキビが生まれる。つまり、生態系のとってはCO2が少ないことの方が問題なのかもね。
第四紀(更新世、完新世) 約258万8千年前(約260万年前)~現在
第四紀は北米やヨーロッパの大部分が氷床に覆われる寒冷な「氷期」と、現在のように比較的温暖な「間氷期」が交互に訪れ、非常に短期間に大きな環境変化が繰り返し起こった時期。最も新しい氷期の最盛期は約1万8000年前であり、平均気温は今より6~7℃低かった。第四紀の氷期と間氷期の推移の周期性を調査したところ、地球の公転軌道の離心率の変化(10万年周期)、自転軸の傾きの変化(4万年周期)、更に自転軸の歳差運動(2.3万年ないし1,8万年周期)と一致することがわかった。これらの変化によって北緯55°から北緯65°の地域における夏の日射量が減ったことが氷期が始まるきっかけとなっている。この氷期と間氷期の周期性はこれを数学的計算によって予言した科学者にちなんでミランコビッチ・サイクルと呼ばれている。第四紀は、人類の時代とされる。でも、第四期なんて地球の歴史からは、高々、1/1,800程度、地球の歴史を1年に見立てた地球カレンダーでは大みそかの夜寝る前ぐらいなものだ。更に驚くべきことは、現在我々が生きている完新世が始まるのは、1万年ぐらい前から。日本では縄文時代が始まったころだ。それまではすべて更新世に属する事柄だ。

ラミダス猿人;人類は樹上生活していた霊長類のうち、アフリカに住んでいた類人猿から派生。約440万年前(新第三紀鮮新世)のエジプトの地層から類人猿と分かれて直立二足歩行したラミダス猿人の化石が日本の調査隊によって1992-1993年に発掘され、その後ラミダス猿人の亜種は約580万年前までさかのぼることが判明。
アウストラロピテクス;次にアウストラロピテクス(アファール猿人)が登場。化石はエチオピアや南アフリカの約250万年前-350万年前(新第三紀鮮新世)の地層から見つかっているが、骨格化石や足跡の化石から確実に二足歩行していたことが確認された。歩行から開放されたアウストラロピテクスの手は物をつかんだりする以外に、石を加工して石器を作ることができるようになる。アファール猿人から2種の猿人が派生した。硬い植物を食べるために頑丈な顎を発達させた猿人と、肉食による動物性タンパク質の摂取によって脳を発達させ、石器を活用した猿人である。前者は約100万年前にすべて絶滅してしまい、後者の系統のホモ・ハビリス(脳容積は600mlあって、チンパンジーの300-400mlよりはるかに大きい)が現在の人類に続いている。
ホモ・エレクトス;次のホモ・エレクトスは脳容積を850mlに増やし、生存場所もインドネシア(ジャワ原人約20-100万年前)や中国(北京原人約35-50万年前)に拡大。地質時代では第四紀の更新世になっている。ヨーロッパでは少し遅れて約3万-25万年前の地層からネアンデルタール人(今の分類ではホモ・サピエンス)が見つかっている。現生人類のホモ・サピエンスは、ミトコンドリアDNA分析の結果から約20万年前のアフリカで生まれたとされる。ホモ・サピエンスは厳しい氷期の気候にも適応して、世界各地に生存領域を広げていった。
ホモ・サピエンス;ホモ・サピエンスは約10万年前にアフリカを出て中東に達し、北のヨーロッパへ向かったグループと、東に向かったグループに分かれた。東に向かったグループは南アジアを進み、インドネシアの島嶼伝いにオーストラリアに達し(約5-6万年前)。インドから東へ向かったグループは中国を経由してシベリアには約2.5-3.5万年前に到達、更に氷河に覆われたベーリング海峡を渡って約1万2千年前には北アメリカに到達。
集団で効率的に狩りをするホモ・サピエンスは地上で最強の狩猟者であり、多くの動物を狩猟の対象とした。多くの大型動物が約1万年前に絶滅したが、丁度氷期から間氷期に移行する時期に相当し、気温の変化により植生が変わって食物等がなくなって絶滅した種もあるが、人類によって滅ぼされた種もあると見られている。最近数百年間でもドードーやステラーカイギュウなどのように人類によって短期間に狩りつくされた種がある。
第四紀の哺乳類全体の傾向として、新第三紀に比べて種や個体数が減少したことがあげられる。長鼻目は一時オーストラリアを除く全世界に分布したが現在はインドとアフリカに2種を残すのみ、奇蹄類のサイも現生種は5種、同じく奇蹄類のウマ類も種数を大幅に減らした。結局、これらの絶滅した生物たちは人類が滅ぼしているのかも。

地球の歴史・生命の歴史
scienceの部屋---はじめに

世界一高い山はエベレストか

 山の高さとはどうやって図るのか。普通の人間の実感では地上から高くそびえたっている威厳のある山。だから、基準となる地上自体が高い位置にあって、そこから少しだけ高くなっている場合は、実感としては高いと感じないですね。
 普通は、平均海水面というものを想定して、そこからの高さを海抜として、そこからの高さで表します。例えば、エベレストは海抜8,848mということで、確かに世界一。普通標高というのは海抜のことらしい。
エベレスト マウナケア火山  でも、でも、ハワイ島のマウナケア火山は、標高4,205mなっているけど、周辺の海底が5,000mの深さなので、海底面からは9,205mの高さがあることになり、エベレストを抜いてしまう。海底からそびえたっている火山の中には他にもエベレストよりも高い山が多いとか。
 平均海水面というのも、結構分かりにくい考えですね。それならいっそ、地球の中心から高さを測れば良いのでは。ところが、地球は一見目で見たところ完全な球ですが、実は赤道方向の方が南北方向よりも大きい、回転楕円体という形をしています。自転の遠心力で赤道付近が膨らんでいるのです。だから、この地球の中心から高さを測る方法では、ランキングの上位に来るのは赤道付近の山々が多くなります。No.1は南米エクアドルのチンボラソ山(6,310m)。エベレストは31番目だそうだ。当然このような高さの定義は我々の実感とはあまりにもかけ離れているので採用される可能性はないでしょう。
 なお、地球の半径は、赤道半径の実測値は、6378136.6±0.1 m、極半径は、約 6356.775 km で、赤道半径のほうが極半径よりも約 21.4 km も大きいということだ。しかし、紙の上にコンパスで約6.4cmの円を地球(半径を6400kmとして)として、その上にエベレストを描いてもその高さは0.1mm以下だ。遠くから見ると地球は基本的にはすべすべの球であることには変わりない。

地球の歴史・生命の歴史
scienceの部屋---はじめに

テチス海とは

テチス海 テチス海は、パンゲア大陸の分裂が始まった約2億年前ないし約1億8000万年前から、新生代第三紀まで存在していた海。ローラシア大陸ゴンドワナ大陸に挟まれた海域。現在の地中海周辺から中央アジア・ヒマラヤ・東南アジアにまで広がる。また西側にも広がっておりカリブ海まで達していた。
アルプスやアフリカ大陸で化石の調査をしていたエドアルト・ジュースにより1893年にテチス海の存在が提唱された。名前の由来はギリシア神話の海の女神・テーテュース (Tethys) から来ている。ちなみに海神(男神)にはポセイドンとネプチューンがある。
テチス海は、3億9000万年ほど前のデヴォン紀に出現したようだ(古テチス海 (Paleo-Tethys Ocean))。3億6000万年前の石炭紀までに広がり始めた。2億5000万年前のペルム紀と三畳紀にはローラシアとゴンドワナが合体して一つの超大陸「パンゲア」を作る。古テチス海はパンゲア大陸を形成する陸塊に周囲の多くを囲まれた内海となる。
パンゲア超大陸は約2億年前ないし約1億8000万年前に南のゴンドワナ大陸と北のローラシア大陸へと再度分裂し始め、古テチス海と連結する形で新たなテチス海が誕生する。
その後、ゴンドワナ大陸からアフリカ大陸とインド大陸(現在のインド亜大陸またはインド半島)が切り離されて北上。インド大陸とユーラシア大陸が衝突してヒマラヤ山脈を形成する。アフリカ大陸とユーラシア大陸が接近して、テチス海は消滅。カスピ海、黒海、アラル海はテチス海の名残とも考えられている。 テチス海が存在した当時、テチス海は赤道上にあり、赤道上には海流を妨げるものがなかった。したがって地球の自転の影響で、赤道上を自転とは反対方向に流れる赤道海流がテチス海を通っていたと考えられている。この赤道海流は地球の気候や気象条件に大きな影響を与え、現在より温暖な時代であったと推定されている。
テチス海が存在した当時、温暖な気候の下で植物プランクトンが大いに繁殖し多くの死骸が海底に降り積もり、さらにその上に土砂が堆積し、大陸の接近により陸地化し、現代の中東地区の石油に変化したとされる。
大陸移動説やプレート理論により、ずいぶん色々なことが分かってきた。地球自体が一つの生命体(ガイヤの概念)で日々成長しているんですね。
注1). ポセイドン(Poseidon): ギリシア神話の海と地震を司る神。オリュンポス十二神の一柱で、最高神ゼウスに次ぐ圧倒的な強さを誇る。
注2). ネプチューン(Neptune):ローマ神話の神でポセイドンに相当。
注3). テーテュース(Tethys): ギリシア神話の海の女神なのだが、ポセイドン関係は。ギリシア神話の世界も複雑で結構ややこしい。
注3).古生代は、カンブリア、オルドビス、シルル、デボン、石炭、二畳紀と6つの紀が続く。その後の中生代は、三畳、ジュラ、白亜紀だ。
注4).新生代:白亜紀以降は新生代。新生代は第三紀と第四紀。何故か一と二が無い。

地球の歴史・生命の歴史
scienceの部屋---はじめに

スノーボールアース

46億年の地球の歴史において、地球全体が氷に覆われた時代があったらしい。それも2回も(それ以上との説も)。スノーボールアース(Snowball Earth、全球凍結)、とは、地球全体が赤道付近も含め完全に氷床や海氷に覆われた状態。とても信じがたい説ですが、色々な証拠からどうもこれが地球の歴史の本当の姿らしい。
①原生代初期のヒューロニアン氷河時代(約24億5000万年前~約22億年前)
②原生代末期のスターチアン氷河時代およびマリノニアン氷河時代(約7億3000万年前~約6億3500万年前)
全球凍結 に、地球表面全体が凍結するほどの激しい氷河時代が存在したという考え方が地球史の研究者の間で主流となりつつある。1992年にカリフォルニア工科大学のジョー・カーシュヴィンク教授がアイデアとして専門誌に発表したのが発端。現在では、どうもこの仮説は色々な証拠からもっともらしいと考えられている。
注目するべき点は、それまで「ありえない」と考えられてきた「全球凍結」という壮絶な環境変動が実際に起こったらしいこと。それが原因となって原生生物の大量絶滅とそれに続く跳躍的な生物進化をもたらしたとされること。たとえば酸素呼吸をする生物の誕生や、エディアカラ生物群と呼ばれる多細胞生物の出現などがスノーボールアース・イベントと密接に関わっていると考えらる。
スノーボールアース仮説では、地球が完全に凍結したとしても再び温暖な環境を取り戻す過程を提示した。それまでの見方は、地球は一度凍結したら解凍できないという見方が主流だった。解凍できるなら地球史上にスノーボールアース状態が存在する可能性が出てくる。凍結から脱する要素として火山活動に由来する二酸化炭素などの温室効果ガスの蓄積が挙げられた。
一度凍結したら解凍できないという考えの根拠は、地球表面のアルベド(反射能)の観点がある。アルベドとは要は熱収支のバランス。氷で覆われた地表は、太陽の光エネルギーを反射してしまうので、もらう熱よりも失う熱の方が多くなり、どんどん寒くなってしまう正のフィードバックが作用してしまうと言われる。逆に、北極や南極の氷が溶けはじめると露出する地表が増え、アルベドが減少し、みるみるうちに温暖化してしまうのだそうだ。
現在の地球に見られるような液体の海は大気中の二酸化炭素を吸収するため、大気中の温暖化ガスの濃度はある程度に抑えられ温室効果による温度上昇も抑制される。しかし、全球凍結状態では海が凍り付いてしまうので、二酸化炭素は吸収できず、火山から放出された二酸化炭素大気中に蓄積する。このため、二酸化炭素の濃度は約2000年間かけて最終的に現在の400倍程度に達したとされる。その大きな温室効果が大気の温度を最大で 100 ℃ 近く上昇、結果として平均気温は 40 ℃ 程度まで上昇(最初は-60℃ということか)。氷床が溶けだし、全球凍結状態を脱出したと考えられている。また生物についても、凍結しなかった深海底(氷は水に浮く)や火山周辺の地熱地帯のような、一定の温度が保たれる場所で生きながらえてきたと考えられている。

【地表温度を決める要因】
地表は、主に昼に太陽光線が当たって温められる一方で、宇宙空間へ熱エネルギーを放射して冷える。地球の表面温度はこの太陽から受け取るエネルギーと宇宙空間へ放散されてゆくエネルギーのバランスで決まる。
エネルギー源である太陽の明るさについては、太陽の進化モデルによると、太陽系が生まれた46億年前には明るさ現在の約70%しかなく、その後徐々に明るさを増してきたとされている。太陽は現在でも約1億年で1%の割合で明るさを増し続けている。即ち地球の歴史をさかのぼるほど、太陽から受けるエネルギーが少ない。つまり、昔は太陽はもっと暗かった。もちろん、地球の気温は太陽の明るさだけで単純に決まることはなく、昔ほど気温が低かったという訳ではない。
太陽からのエネルギーが少なかった約38億年前においても地球上には液体の海が存在していた証拠があり、現在の地球大気の条件では太陽光が現状の90%に弱まると地球表面は凍結すると予想されて(巨大火山が爆発でもしたらどうなるか)いることを考え合わせると、温室効果など他の要因も地球環境に大きな影響を持っていることがわかる。
メタンや二酸化炭素などのガスは、地球表面から宇宙へ放射される熱エネルギー量を減らし、結果として気温を上げる働きをする(温室効果ガス)。現在の二酸化炭素濃度は0.04%(400ppm)程度で、それによる温室効果は33℃と考えられる。即ち現在の地表平均気温15℃に対し温室効果が全くない時の予想気温(有効温度)は-18℃(33-18=15)とされている。
地球誕生時には大気中に二酸化炭素が大量に(0.1気圧ないし10気圧相当)存在したとされており、また二酸化炭素より温室効果の高いメタンガスもヒューロニアン氷河時代以前の約30億年前の大気にはかなり存在していたと考えられている。
初期の地球大気に存在していた大量の二酸化炭素は、のちに石灰岩や苦灰石などの炭酸塩岩として大量に地殻に固定されて減少し、また一部は石炭や石油などの化石燃料として大気から除かれてきた。炭酸塩岩や化石燃料に固定されている炭素をすべて解放すると90気圧に相当するが、この量は現在の金星の大気「二酸化炭素主体の90気圧」に匹敵する。
白い氷床は太陽光の反射率(アルベド)が非常に高く、入射した太陽光のエネルギーがそのまま宇宙空間へ流出する。その結果、地表の一定以上の範囲が氷に覆われると寒冷化は急激に加速する。逆の場合も成立し、氷床が減ってゆくと相乗的に気温が上昇する(いずれも正のフィードバック)。スノーボールアースの開始と終了の原因について、温室効果ガスの面からの検証がなされている。

【温室効果ガスが変化する要因】
初期の地球大気に含まれていたメタンは、シアノバクテリアの光合成による酸素が大気中に蓄積され始めた約25億年前ころに、酸化されて空気中から無くなる。上記のように二酸化炭素は現在の大気中に存在する量(0.04%)の30万倍(90気圧相当)が地殻や地表に固定されているが、地質学的尺度でみると、長い時間をかけてプレートテクトニクスによって説明される大きな循環系を形成しており、大気中の二酸化炭素の量は1千万年以上の長い周期で増減している。 つまり、一旦マントルに取り込まれて地下に潜りこんだ二酸化炭素は、火山ガスにより大気中に再度供給されるのだ。
大気中の二酸化炭素は海に吸収され、そこでカルシウムやマグネシウムなどのイオンと結合して方解石(CaCO3)や苦灰石(CaMg(CO3)2)などの炭酸塩鉱物(カーボネート)を生成し、海底に堆積する。海水への金属イオンの供給は大陸の岩石の風化による。
生物の光合成によって二酸化炭素が有機物として固定化される。有機物は生物の死後腐敗作用によって再度二酸化炭素に戻るが、海底に埋まった死骸などは分解されずに固定化する。海底に堆積した炭酸塩鉱物や生物死骸は、プレートの移動によって数千万年後に海溝から地下へ沈み込む。沈み込んだ炭酸塩鉱物や生物死骸は地下の高熱で分解して二酸化炭素に変化し、海溝近くの火山から火山ガスとして再度大気中に放出される。
これはほぼ数千万年を単位とするサイクルであるが、この循環系に大陸の要因が追加される。プレートの沈み込み帯での火山活動によって陸地が形成される。陸上に露出した岩石は海中にあるときに比べて風化の影響を強く受け、その結果海洋へより多くの金属イオンを供給する。大きな大陸が形成された場合は風化される岩石量が増えて金属イオンの供給が増え、結果的に二酸化炭素の固定化が促進される。大陸が赤道付近にある場合も高温による風化の促進で、二酸化炭素の固定が促進される。海底に堆積した炭酸塩鉱物や生物死骸が付加体となって大陸に固定化されると、風化によって溶解されるまで約数億年間かかる。即ち上記の海低堆積岩に比べて非常に長い間二酸化炭素が固定されることになる。

【大陸の存在】
誕生以来、地球の表面の大半は海に覆われ、長い間は大きな陸地が無かったとされている。ところが約27億年前に大規模な火山活動があり大陸が急激に成長した。この大陸が大量に供給した金属イオンによって二酸化炭素が炭酸塩鉱物として固定される様になり、大気中の濃度が大幅に低下し、温室効果が低下した地表は寒冷化して原生代初期のスノーボールアースが始まったともいわれる。
また原生代後期のスノーボールアース時においては、陸地のほとんどが赤道近くに集まり超大陸ロディニアを形成し、そのころ陸地面積が大幅に増えたことが示唆されている。この結果岩石の侵食は増加し、イオン化したカルシウムやマグネシウムを大量に海へ供給した。
さらにロディニアが赤道付近に位置していたことにより、地球が寒冷化しやすい状態にあったという説もある。エネルギー収支の面から言えば、陸地は海よりも熱の反射率が高く(アルベドが大きく)、赤道近くに陸地が多いほど太陽エネルギー吸収の効率を下げる。また、化学的面からいえば、高緯度に陸地があった場合、それが氷に覆われると岩石の侵食が抑制され、金属イオンの海への供給が減少し、結果、炭酸塩鉱物として固定される二酸化炭素が減少して大気中の二酸化炭素が増加して寒冷化の進行を抑える。

【スノーボールアースの推移(仮説)】…NASAによる全球凍結に至る過程のシミュレーション
1.大量の二酸化炭素が地殻に固定され、大気中の二酸化炭素量が低下した。
2.温室効果の減少により地球全体の寒冷化が始まり、極地から次第に氷床が発達していった。氷床が太陽光を反射したため一層の寒冷化を招いた。
3.一度加速した寒冷化は止まらず、最終的に厚さ約1000mにも及ぶ氷床が全地球を覆い、スノーボールアースに至った。この状態は数億年~数千万年続いたとみられる。
4.凍結しなかった深海底や火山周辺の地熱地帯では、わずかながら生命活動が維持されていた。凍結中も火山活動による二酸化炭素の供給は続けられており、大気中の二酸化炭素濃度が高まっていった。地表が凍結している間は岩石の風化も凍結状態だった。
5.大気中の二酸化炭素濃度が一定比率に達すると気温が上昇し、一気に氷床の解凍が始まった。短く見積もった場合には数百年単位で極地以外の氷床が消滅して、気温は約40℃まで上昇したと推定されている。温暖化した気候の影響により大規模な嵐や台風が頻発するようになり、岩石の風化が促進され、大量の金属イオンが海に供給された。また長年堆積していた海の沈殿物が嵐により撹拌され、沈殿物が海の表層部に舞い上がった。
6.大気中の高濃度の二酸化炭素は海中に溶け込み、一部は上記金属イオンと結合して大量の炭酸塩岩を海底に沈殿させた。
7.海の表層部に舞い上がった大量の沈殿物や陸地から供給される栄養塩類が光合成単細胞生物に利用され、光合成を激しく促した。またスノーボールアース以前の光合成生物の酸素放出速度より遥かに速いスピードで酸素が放出されたため、大量の酸素が地球に蓄積していった。
8.スノーボールアース中に極低温により大量絶滅が起こっていた。スノーボールアースの終了後、生き残った生物の適応拡散が起こった。原生代初期のスノーボールアースでは、酸素呼吸をおこなう真核生物の繁栄がはじまった。原生代後期では一部の生物が海中の高濃度の酸素を利用し、細胞接着物質であるコラーゲンを産生することに成功。単細胞間の接合が促進され、多細胞生物が出現するようになった。
原生代後期のスノーボールアースが始まる前(10億年前)の生物界は単細胞生物が主体で、多細胞生物は小形の菌類などがようやく出現し始めた段階であった。しかしスノーボールアースが終了した原生代末のエディアカラ紀(6.2~5.5億年前)には、エディアカラ生物群と呼ばれる大形生物が出現している。大きなものでは長さ1mを超える生物化石がオーストラリア南部のエディアカラ丘陵から産出した。この突然の大形生物出現とスノーボールアースの関係について検討が行われている。なお生物の進化は加速し、その次のカンブリア紀にはバージェス頁岩化石に代表される多様な生物群が生まれた(カンブリア爆発)。

地球の歴史・生命の歴史
scienceの部屋---はじめに

地質時代区分

地球の歴史は約46億年と推定されている。これは太陽系全体の年齢とほぼ同じだ。地球の歴史は今までは主に、地質の研究をもとに積重ねられてきた。つまり、たまたま掘出された比較的大きな化石を元に推定されてきた。
地質時代 地質の研究で最も古い化石は当時、カンブリア時代の三葉虫の化石だった。これが進化論者のダーウィンを最も悩ませたものだったらしい。彼は、生物は単純なものから進化によって次第に複雑なものに変化すると主張していたので、最初の化石生物が三葉虫ではあまりにも複雑すぎる。
現在では、化石の研究も進んで、微生物の化石まで分析できるようになって来ている。カンブリア時代は5.42億年前から始まる。地球の歴史から行くと9割近くの時間が経ってからだ。それより前の時代は一括して先カンブリア時代と呼んでいる。しかし、そんな呼称はそろそろ過去のものに成りつつある。地球の歴史と言いながら、前半の9割近くが空白のままでは羊頭狗肉の感を免れない。
実は、表に見られるようにかなりの所まで、時代区分が出来てきている。ここまで、詳細に時代が区分されているということは、そのもととなる根拠も相当積み重なった来たということだ。

冥王代:
原始地球 まさに、地球が形成せれる時代だ。だいたい46億年前から40億年前までの6億年ぐらいか。次の始生代との境目も明確でない。次から次へと空から新しい物質が降って来る。40億年以上古いと思われる岩石も発見されているが、これらに相当する岩石は月でも発見されている。今後は小惑星からも発見されるかも。
通常地質学で古代の研究を行うには、その時代に作られた地層や岩石を分析して情報を入手し検討する。しかし冥王代については当時の岩石が殆ど入手できない。1970年代までは地球の情報だけしか得られなかったため冥王代における地球の進化は分からなかったが、太陽系内の他の星や隕石を研究することによって実証的な議論ができるようになった。また太陽系の形成や、地球誕生時の状況については理論に基づくシミュレーションが行われている。地球や隕石の年代分析については、放射性元素の分解による生成物を定量して年代を計測する放射年代測定が用いられる。

太古代:
太古代(たいこだい、Archean eon)とは、地質時代の分類のひとつ。40億年前(または38億年前)から25億年前までの間を指す。最初の生命が誕生したと考えられる冥王代の次の時代であり、原核生物から真核単細胞生物が現れるまでで原生代の前の時代。かつては、英語のArcheozoicの直訳から始生代(しせいだい)とも呼ばれていた。

原生代:
原生代(げんせいだい、Proterozoic)とは、地質時代の区分(累代)のひとつ。真核単細胞生物から硬い骨格を持った多細胞生物の化石が多数現れるまでの25億年前〜約5億4,100万年前を指す。元々は、先カンブリア時代以前の全ての時代を指していた。
シアノバクテリアの活動によって大気中に酸素の大放出が始まり、オゾン層ができて紫外線が地表に届かなくなった。また、古細菌類から原始真核生物が分岐し、さらにαプロテオバクテリア(後のミトコンドリア)が共生することで現在の真核生物が成立した。後期には多細胞生物も出現した。なお、この時代2回もスノーボールアースの時代が生じたことも特筆すべきことかも。

地球の歴史・生命の歴史
scienceの部屋---はじめに

クライオジェニアン

クライオジェニアン紀(Cryogenian)は新原生代の2番目の紀。8億5000万年まえから6億3500万年前までの時代だ。3番目のエディアカラ紀に多細胞の生物が出現する。だからクライオジェニアン紀は、単細胞の生き物が多細胞に進化する準備段階の時代と言うことだろう。
全球凍結 クライオジェニアン紀という名前は、ギリシャ語で「氷」を意味するcryosと「誕生」を意味するgenesisから作られたそうだ。中国語での漢字表記は「成冰纪」(成氷紀)となる。日本でも地質時代の命名は中国語を使う方が理にかなっているようだ。
トニアン紀の終わりからエディアカラ紀の始まりまでの8億5000万〜6億3500万年前に、スターティアン氷期とマリノア氷期の2つの大きな氷河期があった。まさに、これが二回目の全休凍結の時期に相当する。もう一つの第一回目の全休凍結は、原生代初期のヒューロニアン氷河時代(約24億5000万年前~約22億年前)でかなり前のことだ。従って凍結とその解凍の理由、メカニズムもかなり異なっているようだ。
氷期があった証拠は、各地の存在するこの紀特有の氷河堆積物だそうだ。地球はこの時代、周期的に幾度か赤道まで氷河が伸長していたらしい。氷河の痕跡を示す漂礫岩堆積物がコンゴ、サハラ砂漠、オマーン、オーストラリア、中国、北アメリカ、アイルランド、スコットランド、ノルウェー他世界中で見つかっているらしい。漂礫岩堆積物は低緯度だった地域にも発生していたことから、海洋が深くまで凍りついた「スノーボールアース」と呼ばれる現象が起きたと考えられている。
アクリターク(分類不能な微細な生物の化石群)の数は氷河期によって激減し、大気中の酸素は増加したといわれる。非常に低緯度の地域にも氷河があったこと、暖かい水域の堆積物であるはずの石灰岩が氷河堆積物の上下や混在していたりするなど、この氷河期にはいくつかの謎がある。
古地磁気研究によれば大陸移動の率は非常に大きい。基本的に大陸地殻の著しい不均衡は自転軸の方向はそのままに地球を大陸塊が赤道上に来るまで横転させる。これが見かけ上平均より非常に速い大陸移動を引き起こす。
トニアン紀は新原生代の最初の紀で、10億〜8億5000万年前にあたる。現在のところトニアンの期の区分は定義されていない。ギリシャ語で「伸張」を意味するtonasから。中国語の漢字表記では「拉伸纪」(拉伸紀)となる。
トニアンの出来事の中で特徴的なのが超大陸ロディニアの存在とその分裂。これは後の超大陸パンゲアと同様に全ての陸地が一つの集まった時期。これは古地磁気などの科学的調査方法で判明した事実である。ロディニアの周囲には巨大な大洋ミロヴィア海が広がっていたとされる。まるでおとぎの国の世界みたいだ。
顕生代カンブリア紀5億4200万年前~4億8800万年前)以降で、それより前の地質時代は、冥王代、始生代、原生代25億年前~5億4200万年前)となる。その原生代を古原生代、中原生代、新原生代を分ける。新原生代は、トニアン紀、クライオジェニアン紀、エディアカラ紀の三つに分けられる。クライオジェニアン紀に生じた全休凍結現象が、その後の生物の進化に大きな方向性を与えたらしいことが分かってきている。
【何故全球凍結が解消されたのか??】
どうも、全球凍結という事態はあったらしいことが色々な証拠から分かってきたようだ。しかし、従来の科学者達は、一度全球凍結が始まると、ますます地球は寒冷化してもう二度と元には戻れないと考えていた。つまり正のフィードバック機構が働くはずだと。だから全球凍結何て言う事態は無かったはずだと考えていた。でも、地球は生きている。地表(ほとんどが海面)が氷で覆われている間も、火山活動で噴出されるCO2が大気中に蓄積されていく。地表には光合成をする生物がいなくなっているのでCO2はどんどん蓄積され、温室効果をもたらし、氷を溶かしたのだと説明されている。光合成を行う生き物が出現すると、CO2がドンドン使われ、温室効果ガスが減るため気温は低下。うまく負のフィードバックが働いたということらしい。

地球の歴史・生命の歴史
scienceの部屋---はじめに

恐竜と哺乳類

脊椎動物が陸にあがってくる。時代的にはデボン紀か石炭紀か。水中生活から陸上生活の移るには色々と制約があったはずだ。特にこの変化は環境の酸素濃度と気温が大きく関連しているらしい。また酸素濃度の上昇とともに上空にオゾン層が形成されて陸上での紫外線を防御してくれるようになったことも大きい。
脊椎動物の進化の道筋は、魚類→両生類→爬虫類→哺乳類(鳥類)と言うのが今までの考え方だ。一本道のようだけど、実際にはその都度、分岐がある。つまり、魚類の一部が両生類に、両生類の一部が爬虫類に、爬虫類の一部から哺乳類と鳥類が分岐したということ。
それでは、中生代に大繁栄し陸上を席巻した恐竜は、爬虫類なのか。昔の人達はそう考えた。恐竜(dinosaur)とは「恐ろしいトカゲ」と言うのがもともとの意味だから。
最近の話題では、恐竜の一部が進化して鳥になったというものがある。また、世界各地、特に中国では新種の鳥の先祖の化石が頻繁に発掘されてきている。また、化石の研究からどうも、恐竜自身が爬虫類なのか。どうも現存の爬虫類達とは違って、むしろ鳥類に近いようだと考えられている。恐竜は鳥類も含む一つのグル^プとしてとらえるのが正解らしい。

まず、両生類がどのように陸に適応して、爬虫類に進化したのか。両生類は名前の通り、生息域は陸と水中の両方で、水の無い所では成長できない。両生類は現生動物では、カエル、サンショウウオ、オタマジャクシ、イモリ等がいます。幼生期には鰓(エラ)で呼吸しますが、成長すると肺で呼吸します。魚類から進化し、初めて陸に上がった動物で、体表は柔らかく、鱗(ウロコ)や毛や羽を持ちません。呼吸の半分以上は、皮膚により呼吸します。尾がある(有尾目)サンショウウオ等と尾がない(無尾目)のカエル(成長すると尾が無くなる)等に分類されますが。すると完全に陸で生活するためには次のような体制の改革が必要になりました。
① 陸で卵を産むことが出来る(羊膜卵)。あるいは胎生に変化する。
② 生まれてからすぐに肺呼吸となる。オタマジャクシの化石もあるらしい。大型の凶暴そうな肉食両生類が子供時代はオタマジャクシで過ごしたのでしょうか。呼吸の問題は大きな問題だ。魚でも肺魚なんて進化していたけど。
③ 心臓の構造も進化したようだ。魚では1心房1心室、心臓から送り出された血液は総て鰓へ送り出されて、鰓で酸素を取り入れた新鮮な血液を全身に送る。これでは効率が悪いのか。両生類では2心房1心室に進化し、鳥類と哺乳類では2心房2心室。爬虫類はこの過渡的段階で心室がまだ完全に2つに成りきっていないようだ。
④ 歩行の方法も工夫がいる。両手両足が体の側面に張り出していると体を捩りながらお腹を受けた状態で歩行することに。トカゲやワニはいまだにこの歩き方。歩行が苦手なので餌を捕まえるのは基本的には待ち伏せ方式だ。

エリオプス ヒロノムス
左は両生類のエリオプス。外見は恐ろしそうだ。全長2メートル、体重は推定90キログラムと推定されているの当時としては相当の巨体では。幼生時はオタマジャクシだったのだろうか。右はごく初期の爬虫類ヒロノムス。せいぜい10cm位の大きさ。

卵については、陸上生物のご先祖様はどうも羊膜という方式を発明して、卵の周りを更に炭酸カルシウムで保護する方式を採用して進化して来たようだ。他に胎生と方式もあるがどのように使い分けてきたのもう少し調査が必要だ。産み落とされた卵は呼吸する必要がある。炭酸カルシウムの殻は乾燥対策には有効だが、多少の空気孔が必要で、空気孔が多いと乾燥を防げないというジレンマがある。ところが古生代の後期は空中の酸素濃度が非常に高い時期でこの時期の進化には妨げにならなかったようだ。 親の方の呼吸に関しては、酸素濃度の非常に高い環境が肺呼吸への進化を比較的容易に動かしたようだ。肺呼吸で空気から酸素を取り入れるのと、水中で溶存酸素を鰓で取り入れるのとを比べ、どちらがどのぐらい効率が良いのかは調べてみたいとは思います。
【心臓の進化】
心臓の進化
血液は、心房から入って心室から出て行く。心房と心室の間には血液が逆流しないように弁がある。心室は丈夫な筋肉で出来ていて脈動ポンプで血液を送り出す。
何はともあれ、石炭紀前期が終わるころには新しく生まれた爬虫類は、大きな三つのグループA~Cに枝分かれして、それぞれが独立した分類群になってしまいます。
A:哺乳類に進化していくグループ
B:カメ類に進化しているグループ
C: 別の爬虫類になっていくグループ
無弓類 単弓類 双弓類
この三つの系統は簡単に区別する方法がある。頭の骨(頭蓋骨)に側頭窓と呼ばれる穴がどうなっているかだ。穴が開いてないのが無弓類Bでカメの祖先だ。穴が1個開いているのが単弓類Aと言って哺乳類の祖先だ。穴が2個開いているのが双弓類C。これは残り全部と言うか、恐竜、鳥類、ワニ類、トカゲ類、蛇類、魚竜、首長竜や翼竜もそうか。三弓類とか四弓類とは無いようだ。穴の数でその後の進化の運命が決まってしまうなんてなんか不合理な気もするんですが。どうも穴の数が機能に影響したというより、分岐した結果たまたまそうなったということなのでしょう。無弓類BついてはCの2つ穴が塞がって亡くなったように見える可能性も指摘されている。穴不思議なお話。古生代に繁栄する(ペルム紀の大絶滅まで続く)のはAの哺乳類タイプだったということ。
この三系統とも酸素濃度が高い時期に同時に出現したようです。何故か、三つ目の双弓類Cは酸素濃度が低くなるまで多様化や特殊化が全く進んでいない。大体全長20cm程度のまま大人しくトカゲのような生活をしていたようだ。一方の無弓類は、別の特別な進化を成し遂げる。
古生代に適応放散していくのは、Aの哺乳類型爬虫類で、盤竜類とそれに続く獣弓類とよばれる種。盤竜類の代表としては、大型の肉食獣のディメトロドンや植物食のエダフォサウルスが有名。背中に帆をつけたユニークな形をしている。帆に日光を浴びて代謝を活発にしたのか。まだ、変温性だったのではないかと想定されている。獣弓類からは、最終的にキノドン類が発生し、これがペルム紀の大絶滅を生き残り、三畳紀には哺乳類へと進化したと考えられている。
ディメトロドン ディメトロドン エダフォサウルス
上の3つの絵は、左二つがディメトロドン、一番右がエダフォサウルス。外見は良く似ている。化石の専門家は歯を見れば何を食べていたかはだいたい見当がつくという。
イノストランケビア キノドン類 キノドン類
左はペルム紀に絶滅するイノストランケビア、右二つは三畳紀まで生き残るキノドンの仲間。

実は、石炭紀の高酸素状態は徐々に逆の低酸素環境へと変わりつつあり、キノドン類は当初の盤竜類の爬虫類達を比べると、相当小型化している。つまり、「大気の酸素濃度と個体の体の大きさはほぼ比例」の関係があるらしい。

恐竜の先祖に当たる、双弓類達も三畳紀にはまだ小型のまま。でもこの時代に双弓類達は低酸素の環境にうまく適応して、次のジュラ紀での大繁栄の基礎を作る。
何と言っても、ポイントは呼吸効率のアップ。鳥も恐竜も気嚢という肺呼吸を補助する器官を発達させる。空気の薄い高山や高空でも平気で飛び回れるのはこの気嚢の機能が大切だ。
二足歩行も、呼吸に対する重力の影響を軽減するため。だから恐竜は最初から二足歩行、鳥と同じだ。 酸素濃度が回復してくると、恐竜たちはイッキに適応放散し、地球上に広がるようになる。低酸素で多くの生き物が絶滅した後なのでニッチが広がっていたから。中生代の陸上は正に恐竜王国となったわけだ。
でも、哺乳類の先祖たちはやられっぱなしだったわけではない。低酸素の環境を乗り切るため、色々な機能を進化させてきたのだが、最大の工夫は体を小さくすることだった。恐竜たちの住めないニッチを開拓し、少ない食料で個体の数を増やすことで対抗できる。同じ戦略は昆虫達も取っている。 地球の歴史を見れば、必ず環境の大変動が生じ、大量絶滅が繰り返し生じている。白亜紀末の大絶滅の跡、恐竜王国は滅び、今は哺乳類(昆虫)の王国。
白亜紀末の大絶滅が無ければ、今頃は知的恐竜が地球を支配していたかも。あるいは、ペルム紀の大絶滅が無ければ、人類とは別のもっと賢い哺乳類が地球を支配していたかも知れない。歴史にもしもは無い。たとえ、偶然の出来事から生じたことでも後戻りはできないのだ。

地球の歴史・生命の歴史
scienceの部屋---はじめに

化学的風化作用

石灰(せっかい)とは、生石灰(酸化カルシウム、CaO)または消石灰(水酸化カルシウム、Ca(OH)2)のこと。炭酸カルシウム(CaCO3)やカルシウム(Ca)を指すこともある。消石灰は生石灰を水で消和(このような作業を消和と称する)してつくり、炭酸カルシウムは消石灰と二酸化炭素が反応してできる。「いしばい」ともいう。古代から貴重な材料だった。
石灰岩は炭酸カルシウムで出来ている。石灰石(貝殻・珊瑚を含む)を焼いて石灰(CaO)を作るための釜を、石灰窯といい古代エジプトで既に発明されており、今でもモルタル、漆喰、セメントの原料になっている。
小学校かあるいは中学校の理科の実験で、水酸化カルシウムの溶液に、息を吹き込み白濁させる実験がある。これは二酸化炭素があることを確かめる実験だ。
まず、生石灰に水をかけて消石灰の水溶液を作る。これは発熱反応なので結構危険だ。必ず大人がついていないといけない。水は一機に入れて沸騰させないようにしないと。水を沢山いれると消石灰は水に溶けて透明な上澄みができるので、これを実験に利用する。
    CaO+H2O→Ca(OH)2+発熱…(1)
さあ、この水酸化カルシウムの水溶液にCO2をストローで吹き込もう。
    Ca(OH)2+CO2→CaCO3+H2O…(2)
ここで、出来る炭酸カルシウム(CaCO3)は水に溶けないので透明な液は白く濁る。「皆さんこれで息の中には炭酸ガスが含まれていることが分かりますね??
でも、あらあらCO2をずっと吹き続けていると液はまた透明になって来る。
    CaCO3+CO2+H2O←→Ca(HCO3)2…(3)
この右側のできた物質は炭酸水素カルシウム(Ca(HCO3)2)といい、こちらは水に溶ける。
    Ca(HCO3)2←→Ca2++2HCO3-…(4)
(3)の反応は、どちらの矢印の方向にも進む。だから鍾乳洞の中では、石灰岩が溶かされたり結晶したりを繰返して、鍾乳石や石筍が作られるわけです。
雨が降って、炭酸ガスが水に溶かされたものが炭酸。
    CO2+H2O←→H2CO3…(4)
だから、炭酸飲料水の瓶を振ればCO2はいくらでも作ることが出来る。自然の雨は空気中の炭酸ガスを溶かしているので若干の酸性だ。だから雨が降れば石灰岩は溶かされて、最終的には海に流される。これが化学的風化の原理的な説明だ。石灰岩以外の岩石も化学式はもっと複雑でしょうが、このような風化が常に起こっているらしい。海に行ったCO2はどうなるのか。微生物の殻となって、微生物が死んだあと最終的に炭酸カルシウムとして海底に沈んでくれれば、空気中からCO2をどんどん除去してくれるのだけど、この反応は(3)式で分かるようにどちら側への進む反応なので、海面から逆に放出されるCO2もあるだろう。しかし、全体として相当な量のCO2が化学的風化によって大気中から除去されていると推定されているようだ。
更に、これに加えて海面では植物性プランクトンによる光合成によるCO2の除去も加算される。海でのCO2の除去は、陸上の全植物によるCO2の除去の量に匹敵するものと推定されている。
ところで、地球上の岩石はケイ酸塩鉱物でできたものが多い。このような岩石は一例だが風化作用で、
    CaSiO3+2CO2+H2O→Ca2++2HCO3-+SiO2 …(1)  (ケイ酸塩鉱物の風化作用)
一方、炭酸塩鉱物の場合は先ほど説明した通り、
    CaCO3+CO2+H2O→Ca2++2HCO3-  …(2)   (炭酸塩鉱物の風化作用)
どちらの場合も
    Ca2++2HCO3-→CaCO3+CO2+H2O …(3)   (炭酸塩の沈殿)
珪酸塩鉱物では、風化の際に2モルのCO2を消費し、沈殿の際に1モルのCO2を排出。差し引き1モルのCO2を空気中から除去する。ただし、炭酸塩鉱物では直接的なCO2の増減は無いようだ。でも、化学的風化により大気中の二酸化炭素が除去され、大気中のCO2は短時間で取り除かれてしまうはず。しかし、海洋底に堆積した炭酸塩鉱物(CaCO3)は、プレート運動によって(プレートの沈み込みによって)地下深くに持ち込まれると、高圧高温下で変成作用を受け下のようになる。
    CaCO3+SiO2→ CaSiO3+CO2 …(4)  (珪酸塩鉱物の生成)
つまり、また珪酸塩鉱物の岩石が作られて、このCO2が、火成活動で火山ガスとして大量に出てくる。この量は、人間活動による排出量と比べて桁違いに大きく温室効果ガス抑制対策を難しくしている。
【追記】石灰岩は基本的に生物の化石だ。微生物たちがせっせと細胞の周りに炭酸カルシウムを備蓄して海底に沈んで堆積して行って、圧力を受けて岩となったもの。地球の歴史から見ると炭酸ガスはどんどん減っているのが長期的な変動。今騒がれている地球温暖化とは逆のシナリオだ。炭酸ガスが減ることは光合成をする植物たちにとっては生命の存続にかかわる大事件だ。温暖化の議論は本当は難しい。

地球の歴史・生命の歴史
scienceの部屋---はじめに

利己的な遺伝子

ここでは「利己的」とは「自己の成功率(生存と繁殖率)を他者よりも高めること」と定義される。遺伝子はそのようにプログラムされているという大前提を含んでいる。神がそのように決めたとでも言うのでしょうか。進化論の変形だろうが、前提そのものに科学的な根拠が全く乏しい。しかし、社会学における色々な現象を統一的な説明したいという欲求にはある程度答えることに成功しているのか。
利己的な遺伝子 1970年代の血縁選択説、社会生物学の発展を受けてジョージ・ウィリアムズ、E・O・ウィルソンらによって提唱され、イギリスの動物行動学者リチャード・ドーキンスが1976年に、『The Selfish Gene』(邦題『利己的な遺伝子』)で一般向けに解説したことが広く受け入れられるきっかけとなった。そのため、ドーキンスは代表的な論者と見なされている。日本でも最近、結構引用されているようだ。
遺伝子と言うものは、デオキシリボ核酸の4種の文字(A、T、C、G)が組合さり、その3文字がコドンをいう語を形成していることが分かって来た。つまり、一つのコドンで64通りの可能性があり、そのコドンを長々と続けることで複雑な遺伝子を構成している。この遺伝子の文章のコピーミスが進化の原動力となっているらしい。だから遺伝子の変化(進化)には基本的に方向性がなく、神の意思など入り込む余地はないのだ。では、何故ランダムな遺伝子の変化が進化を引き起こしたか。それがダーウィンの考えた自然選択、つまり淘汰の考えです。つまり地球環境そのものが進化を決定しているのです。
草原が増えれば哺乳類は大きくなり、森林が増えれば小型化する。大気中の酸素が減れば生物は小型化し、増えれば大きくなる。どの生き物も与えられた環境に良く適合しています。従って、進化とは偶然の産物と言えるのです。しかも過去に5回も壊滅的な大絶滅を経験しています。しかし、どうもこの進化が偶然に支配されていることを認めたくない人たちが大勢いることも確かです。
ドーキンス等の主張は、「利己的」とは「自己の成功率(生存と繁殖率)を他者よりも高めること」と定義され、これが遺伝子の役割(意思)だと見なす。「利他的」とは「自己の成功率を損なってでも他者の成功率を高めること」と定義される。行為者がどのような意図を持っていようとも、行為の結果が自己の成功率を高めるのであれば、それは「姿を変えた利己主義」と考えるようだ。 個体レベルでの自然選択に注目すると、きびしい生存競争の中でわずかでも利他的な行動をとる個体は、そうでない個体よりも平均して「うまくやっていけない」と予測できる。つまり、これを人間社会に置き換えると、他人に親切にする人より、自分のことしか考えない自己中心的な人の方が成功する。これホントでしょうか。
全ての個体が利他的であれば、その群に属するもの達は非常に上手くやっていけるであろうが、中に一個体でも利己的な個体が混入すれば、利他的個体を食い物にして繁栄する。利己的個体は多くの子を残し、次第に利己的な個体は数を増していくであろう。他集団からの移住や、突然変異など利己的な個体の混入をふせぎ続けることは不可能である(進化的に安定な戦略も参照)。でも、実際には動物の世界でも実際にあまりに利己的な個体は集団から排除されてしまうよね。

しかし、現実の自然界でも、子育て行為や群れの中での役割分担など多くの利他的行動と考えられる例も見られる。この事実は、一見すると自然選択説の予想と矛盾するように感じられる。利他的な行動は哺乳類、鳥類等高等な動物の脳(遺伝子)にしっかりと組み込まれたもの。動物の世界にも一定のルール(道徳)があることが分かってきている。

ドーキンス等の主張は、まだまだ続きがあります。何故、色々な生き物たちが利他的行動(他の個体のための行動)を取るのかについて、色々な解釈を行っています。確かに、個体の行動は、その個体の中にある遺伝子によって支配されている。しかし、遺伝子が利己的な行動を促すようにプログラムされている根拠は何も無いはずです。
人は、本来集団で社会生活を行うように進化してきた生き物です。だから利他的行動(他の個体のための行動)をとるように遺伝的にはプログラムされています。資本主義社会では個人の重要性が強調されます。自由とか個性の価値。そのため人生の価値は個人にしかない。一生自分探しをしないといけない。しかし、人は他人に評価されてナンボの世界に生きているんです。

地球の歴史・生命の歴史
scienceの部屋---はじめに

人類の歴史

目次
可笑しな進化論 人の先祖はアフリカ生まれ 人類はマンモスを食して生き延びた 人類は嘘をつく能力で猿から進化したのか
白雪姫と7人の小人達
禁断の実とは何だろう オーストラリアの人類史
パンゲア大陸 火の使用 言語の起源 衣服の起源
神になった人類 芸術の起源 石器時代 遊牧の起源
アナサジの遺跡 青銅器の時代 長老支配の起源 文字の歴史
微生物が人類の歴史を決める 商業の歴史 歴史学とは科学か 世界の人口
マルサスの人口論 日本の人口

可笑しな進化論

チャールズ・ダーウィン(Charles Robert Darwin 1809年~1882年)と言えば、誰でも知っている進化論の提唱者。進化論の提唱から今日では生物学者と一般的に見なされる傾向にあるが、自身は存命中に地質学者を名乗っていたそうです。進化論は、西欧社会ではなかなか認められなかったようでダーウィンも大変苦労したようです(晩年の肖像画は10歳以上高齢に見える)。
ダーウィン これが日本の社会なら簡単だったでしょう。「確かに、ヒトとサル、良くにてはりますな。」「うちは熊田だから、きっと先祖は熊だ。猪木さんとこは、猪だね。」「神が自分に似せて人を造った。それは当然だね。人が神を作ったのだから。犬の神様なら当然犬の形さ。」。簡単にブームになってしまうでしょう。仏教では、輪廻思想もあり人と他の動物を厳然と区別する発想はありません。
ところが、西欧社会では人とサルが共通の先祖を持つという概念が頭から拒否されたわけですね。旧約聖書に書いてあることだけが真理。だから、進化論は認めてもらう為に最大の妥協をしてしまいます。進化には一定の方向があり、だんだん高等なものに進化していくという考えです。だから人類は進化の頂点で、万物の霊長と呼ばれるようになったのです。「万物の霊長という地位を神様から頂いた。だから共通のご先祖が猿でも我慢してね。」「自分で自分のこと一番と思っていれば世話ねーよね。かってに神様を造るな。」
ところで、生物は進化してだんだん高等な生物になっていく。ということは、時間を遡れば、最初は単純な生物―例えば細菌のような単細胞。更に遡れば有機物のスープから生物が自然発生したものという考えは自然です。ちょうど、宇宙が膨張していれば、宇宙の始まりがあったはずと同じ考えです(ビッグバンとして認められている)。ところがダーウィンの時代は、化石が十分発見されてなかったのです。当時知られていた一番古いと思われる化石は、カンブリア紀の三葉虫の化石です。三葉虫は、原始の生物としては非常に複雑な体形をしています。生物モデルとしては完成品です。「どこをどう改良したら、人間に変わるんだ。」結局、この問題ダーウィンを死ぬまで悩ませ続けたと言われています。進化のメカニズムが説明出来ていないのです。
 良く言われる「適者生存」説。「環境への適者が生き残る」「生き残っているものを適者という。」結局、何の説明にもなっていないですね。それなのに、「生物は進化してだんだん高等な生物になっていく。」という、仮説だけが独り歩きしてしまいます。何が「進化」とか「高等」とは何かといった定義をスッ飛ばして、まるで数学の定理のような地位を確立してしまいます。植民地時代の、白人優勢主義。ナチスやルーズベルトも信仰していた「優生学」。人種差別の根拠ともされてしまいます。  さらに、マルクスも進化論の信者だったようです。人類の歴史は、原始共産制→王政→封建制→資本主義→社会主義→共産主義と、進化していくと考えたようですね。歴史的必然性等という言葉もあったのでは。マルクスを尊敬している人には申し訳ありませんが。「生物は進化してだんだん高等な生物になっていく。」と言う仮説が誤りであったとしたら、歴史的必然性という概念も非常にあやふやなものになってしまうでしょう。
 ここまで、読まれた方もうお分かりと思うでしょう。進化論が沢山の弱点を持っていることが。まず、論点を整理しましょう。まず、「生物は創世記の祭に神が造った。」。これはまず、化石の存在によって完全に否定されています。アメリカには、未だにキリスト教原理主義者達が高等学校で進化論を教えないように運動していますが。今では、46億年の地球の歴史と生物達の変遷は認知されています。これを進化と言えば、生物が進化してきたことは証明済み。
 でも、逆に化石は今までの進化の考えに対し、反撃も加えてきます。例えば、恐竜の存在。誰が見ても恐竜は時代の適者、1億年も地上を支配します。大隕石の衝突が無ければ今頃は知能恐竜が地球を支配していたのでしょうか。最初に現れたカンブリア紀の動物達、どれも複雑な形をしていて環境にもよく適応しています。しかも何度も繰り返される生物達の大絶滅は、進化というものに神によって決められた方向性が無いのではと思わせるのに十分ですね。
では、生物はどのように進化するのか。環境が変わると、そこに住む生物は少しずつ変異していくことは既にダーウィンによって発見されました。でも、それあくまでも同じ種の範囲内。魚が陸に上がったり、飛べない鳥が少しでも羽根の長い方が生存に有利(そんなわけない)でそのうち飛べるようになった。こんなこと適者生存説では説明しきれません。
生物が進化していくためには、親の遺伝子が子に伝わっていかねばならないですね。ラマルクという学者は、親が努力して獲得した形質は子に伝わると考えました。一方、メンデルの発見した遺伝の法則、遺伝子というもの基本的には変わらないようにできているのです。そこで「獲得形質は遺伝しない。」ということが確認されてしまいます。でも、ラマルクの考えが全くダメかというと、音楽家の家庭では音楽家が出やすいなど、ある程度の集団が獲得形質を共有することでその集団の環境を変える、その結果適者遺伝と適者生存が組合わさってその性質が受け継がれていくようなこともありそうです。
遺伝子が変わらないと、基本的に進化は起こらない。ところが、遺伝子には突然変異と言う現象があることも分かってきました。遺伝子のコピーミスです。コピーミスの結果は、たまには良いことがあっても、たいていは生き残ることが出来ません。しかも、もし突然変異種が生き残っても、メンデルの遺伝の法則に従えば、その突然変異は群れの中で多数派になることは不可能です。つまり適者にはなれないでしょう。
 生物界での適者生存という概念も、修正が必要なようです。アダム・スミスの言うような自由競争。食うものと食われるもの。ちょうど需要(肉食)と供給(供給)の関係が成り立ち、草食動物の数とそれを食べる肉食動物の比率は一定になります。だけと、同じ食料を利用する動物どうしの自由競争は、最後は1種だけの独占になってしまいます。生物世界の多様性は著しく失われます。多様性が失われることは環境の変化に極めて脆弱なことになります。
 適者生存の考え方に異を唱えたのが、今西 錦司(いまにし きんじ、1902年~1992年)等の日本生態学者達。「棲み分け理論」です。生き物たちは、戦う代わりに住む場所を分けあう方を選択するのですね。例えば、ライオンは草原地帯を好み、トラは密林を好めば両者は戦わなくて済みますね。パンダやコアラのように笹やユーカリの葉を食べていれば、他の草食動物と競合することは無くなります。牛や羊もイネ科の硬い葉を食べれるようになったので大繁栄したのです。生き物たちは競争する代わりに常に新しいニッチ(住み場所)を求めて冒険を続けて来ました。人類だって氷河期には大型動物を追ってシベリアを越え、ベーリング海峡を渡って、南米の端まで旅をします。もともとは、一つの種でも違った環境に長くいるとどうも遺伝的な性格までも変わってしまうようです。突然変異の遺伝は、集団の中の成員数が小さくなるほど残りやすくなることが分かっています。つまり、絶滅寸前まで成員数を減らした種ほど新たな形質を獲得しやすいということ。ホモサピエンスの先祖もアフリカで絶滅寸前まで数を減らしたのでしょう。人類のもつ細胞内のミトコンドリアはアフリカの一人の女性イブのそれにたどり着くということも、それを裏付けているようですね。また、歴史を見ても時代を変えるような人物は決して多数派からは生まれませんね。絶滅と進化はどうも紙一重なのでは。
 ところで、草食動物の多くは、腸内に微生物を共生させていることが知られています。哺乳類は、基本的にデンプンは消化できてもセルロースは消化できないことが分かっています。つまり、腸内微生物無でしは、パンダもコアラも牛も生きて行けないのです。牛の子供も生まれた時は、腸内に微生物を持っていません。母親の糞を取りこむことで微生物を確保します。総ての動物達は体内に無数の微生物を宿しています。人でも最近腸内細菌の重要性が脚光を浴びていますね。微生物は数も多く、突然変異の確率も高くなります。これらの微生物が生物の進化を促進している可能性も大いにありうることです。
 最後に、人間の遺伝子は類人猿とくらべてもほとんど変わりません。では、類人猿の遺伝子の数が多いかと言うとそれほどでもない。遺伝子レベルで見ると、人の遺伝子は特に高度に進化している訳でもなんでもない。つまり、哺乳類は遺伝子レベルで見た場合、DNAの塩基が少しずつ違っているだけで、基本的には優劣は無いということでしょう。更に、同じ遺伝子を持っていても異なった環境では異なった作用をするなど、一つの遺伝子が複数の作用をする等、新しい知見もどんどん出て来ています。
以上、進化論で言われている進化と、社会一般の認識の進化とは異なっているようです。社会一般で認識されている進化は、どんどん改良され良くなっていくという希望的観測が含まれているイメージのようです。民主化だのグローバル化だのが歴史的必然の流れなのか、チョト環境が変化しただけの一時的な流れなのか良く考えて見て下さい。

人類の歴史
人類の歴史の部屋
scienceの部屋---はじめに

人の先祖はアフリカ生まれ

人類は、原猿類という小さなリスぐらいの哺乳類が進化をかさねて、約700万年の時間をかけて、現在のホモサピエンスにたどりついた。現在、人とされる種はホモサピエンスだけだが、化石からは20種類以上の人の仲間がいたことが分かってきた。いま、類人猿として生き残っているのは、テナガザル、オランウータン、ゴリラ、チンパンジー、ボノボの5種類だけで、ボノボとホモサピエンスとの遺伝子の違いは1.6%程度、人は第三のチンパンジーとされている。宇宙人が地球に来たら、「地球には3種類のチンパンジーがいる。その一つが文明とかいうものを造り出してどんどん増えて暴走している。」という観察をするんでしょう。化石人達も、チンパンジーと共通の祖先から分かれたので遺伝子的な差は1%以下しかないかも知れません。
ところで、人類が生まれたのはアフリカということがほぼ定説になってきました。世界の他の地域からも骨の化石が発見されるのですが、どの人類もアフリカを起源として他の地域に拡散しているのです。アフリカ大陸は、他の大陸と分離されており、また厳しい環境下で何度も種の絶滅の危機をくぐりぬけてきたため、その都度、進化してようやく今の人が生まれたのです。
我々の先祖のホモサピエンスは、7万年前にアフリカの大地で最終進化を遂げたと推定されています。「人類の大躍進」の時代とされています。生体的な最大の進化は言葉を獲得したことと考えられます。火の使用により、固い食料を噛み砕く必要が減ってことから、声帯を使って自由に音を操る能力を手に入れたのです。この進化は年配者の誤嚥性肺炎などを引き起こすなど決して肉体にとってはプラスの進化ではないはずですが、言葉による意思伝達は人類に革命的な変化を生じさせました。この時期に道具の形が急に複雑になります。集団の規模が拡大します。リーダーの在り方が、力の支配から知恵の支配に変わったのでしょう。話し合いで事を決め、役割分担を行う。この能力を確保した後、我々の先祖はアフリカを出て、全世界に拡散していきまう。大型の哺乳動物を追って、シベリアからアメリカ大陸まで、更には海を越えてオーストラリア大陸まで。 人類の種としての進化の歴史は、この時点で終わりを遂げます。いま世界に暮らしている人々は総てホモサピエンスという1つの種で、その意味では全く対等です。人の体は7万年前と遺伝的には全く変わっていません。つまり、生まれ落ちた時の赤子の能力には全く差がない、違いは後の育った環境に違いだけです。

人類の歴史
人類の歴史の部屋
scienceの部屋---はじめに

人類はマンモスを食して生き延びた

 マンモスは、氷河時代に非常にうまく適応して大繁栄した種です。大きな体で天敵もなさそう。何故突然消えてしまったのか従来から大きな謎でした。ところで人類の祖先のクロマニヨン人、すなわち新人が拡散するのがちょうどこの氷河時代。類人猿にとっては食料にもっとも苦労しそうな時代です。
 今のアフリカだって、ライオンやハイエナはめったなことで、ゾウやサイやキリンを襲うことは考えられません。肉食獣だって命がけの狩りはしません。子供や傷ついたゾウは餌食(えじき)にされたでしょうが。だから人類は、大型の草食動物を狩るという新しい生存のニッチを見つけたのでしょう。つまり、ゾウを食べることが出来たのは人類だけだった訳。世界各地で大型の哺乳類達が一斉に滅んでいきます。
マンモスの骨の  おそらく、人類はこの方法を見つけなければ、氷河時代を乗り切れずに滅んでしまったでしょう。しかし、地上最強の動物達を狩る能力をどのようにして身に着けたのでしょうか。あなたが氷河時代にいたとしてシミュレーションしてみて下さい。考えられる可能性を探ってみましょう。
1.火の利用
人の祖先たちは、火を使うことを既に会得したようです。ネアンデルタール人も火を使った証拠があるとか。火は夜間の行動を可能にします。大型動物達が夜間に休息を取っている時の集団で襲うことはありそうです。また、大量の火は動物達を恐れさせ追い回すこともできそうです。さらには、彼らが草を食べている草原に火を放ったりもしたかもしれません。
2.道具の利用
兵器としては、槍や刀様な接近戦用のものでは役に立たないでしょう。人類はそんなに勇敢なわけはありません。どんなに勇敢な群れのリーダが鼓舞してもマンモスや毛サイの前にやり1本で立ち向かう者などいる訳がありません。当然、飛び道具でしょう。弓矢、投石器など。火矢などもいいかも。しかも大量に生産しないといけません。武器が無くなれば一巻の終わりです。
3.家畜の利用
大型草食獣たちは、食料を確保するために利用するのであって、皆殺しにするのが目的ではありません。そこには、現在の遊牧民と同じで、大型動物達の後を追っかけて移動して行くという生活習慣が出来上がったのかも知れません。生活に必要な分だけ狩れば良いのです。家畜としては犬の利用が考えられます。狩猟の祭に、犬の能力を大いに活用したのかも知れませんね。あるいは、このようなライフスタイルは犬(オオカミ)から教わったのかもしれませんね。
3.言葉の成立
大型草食獣を狩るには、統率のとれた集団行動が必要。オオカミ達は統率のとれた集団行動で狩りを行う。そのような本能が備わっていない人類は、そのために言語によるコミュニケーションを身につけました。人と他の類人猿達との違いは言語を使えるかどうかということのようです。どうも喉の構造が違うようです。年を取って食べ物の誤飲で肺炎になる等ということは他の類人猿達に無いと考えられています。喉の位置が高くなっているため声帯がうまく使えるらしい。言葉の成立が集団の規模を拡大したようです。話し合いの習慣が生まれ、知恵のあるリーダが出てきます。

どうやら、氷河期には人類はこれらの能力を何とか確保していたようです。氷河期には人類と大型動物達は結構、共存共栄でうまくやっていたのかも。しかし、地球が温暖化してきため、大型動物達の生息できる草地が森林に変化してきて、食料が不足してきます。そのため、人類に食べつくされたのかも。人類の方は、雑食のため元の狩猟採集に戻り、木の実や魚など別の食糧を見つけ歴史の新たなステージに入ります。定住化が進みやがて農業がおこなわれるようになります。

【大型哺乳類は何故絶滅したか】
マンモスを始め、大型の哺乳類の多くは何度かの氷河時代を生き延び、大変環境にも適応していました。ところがこれらの大型の哺乳類(大型の飛べない鳥も含まれる)は、ちょうど人類が世界中に拡散するに伴い、急速に絶滅に向かっているのです。
 よく生物の進化で用いられる説明で、捕食者と被捕食者は互いに競いながら進化してきたと。捕食者は被捕食者を食べつくしてしまったら、自分も絶滅するから。でも、このようなバランスが保たれるのは、環境の変化が緩慢で遺伝情報で生物が進化する速度を越えない場合だけ。たいていの場合は、新しい捕食者が現れると既存の生物は絶滅してしまうのが現実のようです。
 大型の草食の哺乳類たちも、体を大きくして、角や蹄などの武器を持ち、群生して互いに協力し合うことで、肉食捕食者の脅威から身を守ってきたわけです。トラもライオンもゾウやサイ、カバ、キリンなどまずは襲いません。シマウマや牛の仲間だって結構危険が伴います。だから、大型の動物たちはみな悠然と草を食(は)んでいて、他の動物が地数いてきても逃げる必要もないわけです。
 そこへ、槍や石斧を持った人類が、ノコノコと親しげに近づいてきて、槍などで急所をグサリ。面白いほど簡単に狩りができた可能性があります。人類がベーリング海峡を越えて南北アメリカ大陸に渡る。さらに別のルートで太平洋の島々やオーストラリア大陸に渡ることで、もともとその地に生息していた大型の哺乳類たちはことごとく絶滅してしまいます。かって、そのような生き物が生息していたことは化石の証拠から明白です。絶滅の原因は今まで不明とされてきましたが、当時の学者達は人類が食べつくしたとは認めたくなかったからでしょう。このような大型の動物たちの絶滅は現在も継続しています。つい最近の例では、ニュージーランドにいた怪鳥モアとマダガスカル島にいたエピオニルスという巨大な飛べない鳥があります。これも天敵のいない島の暮らしに適応して、巨大化して飛べなくなったため、簡単に狩られてしまったためです。
 一日歩き回って、小動物を狩るよりも大型の動物を狩る方がはるかに楽です。最後の1匹を狩りつくすまで狩りは続きます。そうして、人類は新しい狩場を求めて世界中に。拡散していったようです。

人類の歴史
人類の歴史の部屋
scienceの部屋---はじめに

人類は嘘をつく能力で猿から進化したのか

この考えも、「サピエンス全史(著者;ユヴァル・ノア・ハラリ)」からのもの。人類は数百年かけて少しずついまの体型にと進化してきたことが知られている。最後の化石人類として知られているネアンデルタール人は、ほぼ2万数千年前まで現生人類と共存していたとされている。火の使用や石器の製作は確実と見られている。死者を弔う文化があった可能性も指摘されている。また、頭がい骨の形は異なるもの脳の容量も現生人類よりも大きい。ただし、化石の分析から現生人類のように声帯を使って自由に言語を操ることは難しかったらしい。ところがネアンデルタール人やその近縁の人類たちは突然歴史の舞台から消え去ってしまうのだ。現生人類と比べて、環境への適応では特に見劣りの無い我々人類の兄弟たちが忽然と姿を消したのは、ホモ・サピエンスによる大量虐殺だった可能性も無いとは言えない。

ところで、ハラリ氏によると現在の文明を発展させてきたその原動力は、虚構を語り、虚構を共有することが出来たからだといる。「我々は狼神の子孫だ。」「ご先祖様は蛇は神聖な生き物だ。殺したら罰が当たる。」「○○の人達は、不潔で不信心だから殺してもかまわない。」等々、根拠の全くない事柄でも繰返して発声しているうちに仲間内に共有され虚構を共有することで連帯感が生じてくるのだ。群れのリーダーは虚構を紡ぎ、仲間に植え付けることで大集団を率いることが可能になってくる。せいぜい家族単位の集団で生活していた他の人類たちは、いわれのない理由による集団による不意打ちを食らい簡単に滅びて行ったのではないか。

歴史が始まっても、虚構によるいわれなき虐殺や戦争は後を絶たない。旧約聖書では、モーゼに率いられたイスラエルの民は、神に与えられた土地だからと言って、先住民を大虐殺する。ヒットラーは、ユダヤ人は劣等民族だからと言って絶滅を試みる。中世のヨーロッパでは、十字軍による異教徒の弾圧。宗教裁判での魔女狩り(噂や密告だけで証拠は不要)、知識人は反革命的と弾圧を加えた文化大革命等々、枚挙にいとまがない。

さらに、ハラリ氏によると人類の文明のほとんどは虚構の産物だという。資本主義、民主主義、貨幣経済どれも虚構が万人に認められないと成立しないものだ。つまり、虚構といえども価値はあるものです。どこまでが虚構かを良く理解し、賢く対応していくことが必要ですね。 参考文献;サピエンス全史(著者;ユヴァル・ノア・ハラリ)

人類の歴史
人類の歴史の部屋
scienceの部屋---はじめに

禁断の実とは何だろう

旧約聖書でエデンの園で最初の人類が神様の掟を破って食べたとされる禁断の実、食べると知恵がつくと言われる実は何であったのでしょうか。旧約聖書自体がメソポタミア文明のギガルメッシュ叙事詩がもとになっており、その起源はさらに古く農耕が始まる時代まで遡るはず。
アダムズ・アップル(男性の喉仏)イチジクの葉(恥ずかしい所を隠す)等の言い伝えから、リンゴの実やイチジクの実などとの考えもあるが、木の実を食べることが神様にエデンの園を追い出されるほどの悪事とは考えられない。木の実なら類人猿達でも食べている。メソポタミア地方は世界で最初に本格的な農耕が始まった地域。当然、禁断の実は小麦以外には考えられない。
ドメイン ところで、狩猟民の世界は神の世界である。このことは我が国のアイヌ民族の伝承からも明らかである。熊やオオカミのカムイ(神)の化身であり、狩猟で捕まえた獲物すら神が自分たちに食物を与えるために毛皮を纏って変身してきたものと考えている。つまり、自然と人は一体で、共存すべき存在、つまり神と人が一体で生活していたわけです。狩猟時代の人々も庭に果実の樹を植え家畜を飼うことも行っていました。例えば日本の縄文時代の三内丸山遺跡の大集落も発達していたのですから。
ところが、イネ科の植物となると性格が異なる。牛とか馬のような草食動物しか消化することすら不可能。小麦の先祖種と推定されている「ヒトツブコムギ」は、そのままでは食べることは出来ません。野生の小麦は繁殖のために種子を自分で落として地面にばらまくのでそれを集めて食料にすることはほとんど不可能です。たまたま、わずかな確率で種子が落ちない「非脱粒性」の突然変異が起こることがあるようです。もちろん種子が熟しても地面に落ちなければ自然界では子孫を残すことは不可能。ところが誰かがこれを発見して利用することを考えつく。種子が落ちなければ収穫して食料にして、これを撒いて育てていくことも可能です。種子の落ちない非脱粒性突然変異株の発見、これこそが農業の始まりと言えるものです。アジア原産のイネも同様に非脱粒性の突然変異株の発見がキッカケなのでしょう。
しかし、農業生産を始める人達が出て来ると、従来の神々と共存していた人々のあいだに価値観の相違が生じてきます。だいたい、種子の落ちない非脱粒性突然変異株なんていう奇形、植物の神様としても相当な異端児、鬼ですね。食べてはいけないというタブーがあっても不思議はありません。このような経緯から禁断の知恵の実を食べた人たちは、従来の神々の住む共同体から追い出されて独自の共同体を造るようになったのでしょう。 しかし、その後環境の悪化などから食料を備蓄できる農業民が優位になり、従来の狩猟身を駆逐していくようになります。でも、農業は多大の労力を必要とします。だから、昔の狩猟時代の生活はエデンの園に思えるのでしょう。
旧約聖書では、この後カインとアベルの兄弟の話が出て来ます。弟のアベルは、神様に従来通り羊の生贄を捧げますが、兄のカインは農作物を捧げます。神様はカインの捧げものを喜ばなかったので、カインは弟のアベルを逆恨みして殺してしまう話です。非脱粒性の小麦は、種まきから収穫まですべて人の手で行われます。ヒツジは神の分身とも言えますが、小麦は人間の労力の結晶です。当然神に感謝し共に食する意味は失われます。従ってカインの捧げものは神様に拒否されたわけです。農業の発明によって、宗教も変革していくことになるのでしょう。

人類の歴史
人類の歴史の部屋
scienceの部屋---はじめに

オーストラリアの人類史

 オーストラリアは、白人が到来するまでは基本的に他の大陸とは全く孤立して存在していて、アボリジナルと称される人々が石器時代と同じ生活をしていた。 約5万年前、更新世末期のオーストラリア大陸は、現在に比べて海水面が100m以上低かったため、ニューギニア島やタスマニア島を包含していた。また、一方ジャワ島やスマトラ島、ボルネオ島はアジアと地続きになり、スンダランド (Sundaland) の一部を構成していたようだ。だから、両者を分かつ海は現在に比して狭く、航行も比較的容易であったはずだ。
従って、オーストラリア先住民、アボリジナル (aboriginal) 達はこの頃、スンダランドから海を渡ってオーストラリアに到来したらしい。アボリジナルは以前はオーストラロイドに分類される特殊な人々(原始人に近いという偏見があったのだろう)と見られてきたが、遺伝子の分析や頭蓋骨の測定の結果から、広義のモンゴロイドに属するとの見方が定着してきて、オセアニア系モンゴロイドと分類される。南北大陸へ渡った人々とは別ルートで拡散したモンゴロイド、つまり日本人や中国人、ハワイやインドネシアの人たちと同じ先祖から枝分かれしたということだ。さらには従来の「人種」の概念を否定したより新しい人類集団の分類では、ニューギニアのパプア人と同じくサフール人に分類され、広くは従来モンゴロイドとされた東ユーラシア人(東・東南アジア人)及び南北アメリカ人(アメリカ先住民)と共に「環太平洋人」とする新しい学説もある。
アボリジナルアボリジナル・アート        アボリジナルアボリジナル
今までの人類学では、体型とか文化とか見た目で人種を分類していたけど、遺伝子の解析が出来るようになって来たので、人類の集団がどのように移動し、その土地の環境に適応して来たがが分かるようになりました。それと人類に先祖は元をたどれば皆共通なのだから、人種を差別しようという目的の研究は無意味になってきたようだ。
発見されているオーストラリア最古の人類の化石は、約4万年前のムンゴマンと呼ばれる男性(2014年時点)である。オーストラリアの歴史はアボリジナルの歴史となるが、詳しいことは判っていない。そもそも狩猟採集民は巨大な遺跡を残すことはない。発見された人骨や洞穴に描かれた絵画、語り継がれた神話から推し量る以外に復元の方法はない。オーストラリアが歴史の舞台に現れるのは、西洋人との接触の時代まで待たねばならない。
ただ近年、オーストラリア大陸が外界から隔絶された場所だったという強い認識を覆す研究結果もいくつかある。約4000年前に豪州大陸へと渡った古代のインド人と古代のアボリジニは混血していたという研究結果がある。アボリジニの伝承の中には、ヨーロッパ人来訪以前も、どこからかやってきた黒人や白人たちと交流があったとの話が伝わっており、中東やアフリカからオーストラリア北部を訪れる船乗りがいたと推測する者もいる。2世紀に描かれたプトレマイオスの世界地図が示すように、西洋の人々も古くから、南方に大陸が存在するとの考えを持っていたようであるが、彼らがオセアニアの海域に到来するのはいわゆる大航海時代になってからのことだ。

 アボリジナル達は、孤立した世界にいたとは言え、何故これほどまでに進化を拒否した文明を守り続けたのか。すぐ隣のニューギニアでは、すでに農耕を行っている部族達もいる。その答えは、オーストラリアの極度に厳しい自然環境にあるという。他の大陸と比べても乾燥して雨のほとんど降らないこの地には農耕に適する植物は一つもない。また、家畜として育てられる動物もほとんどいない。たとえ外からの訪問者が農耕の技術を伝えても、それを適応できる作物が不在なのだ。

 だから、入植した白人たちも現地で調達したものは、何もない。小麦も羊も牛もすべて外から持ち込んだものだ。今では、農業は南西部の雨が比較的多いところで行われているが、これも井戸を掘り地下水を利用することで初めて可能になった。また、鉱物資源の利用も現代の技術をもってして初めて可能だ。そして、アボリジナル達は、たまたまこの土地に定住した(狩猟採集民なので移動生活かも)ために、現在の生活を強いられているわけだ。決して人種的に能力がなく劣っているという訳ではない。

人類の歴史
人類の歴史の部屋
scienceの部屋---はじめに

生物の世界

バッタを倒しにアフリカへ バイオエアロゾルとは 藻類とは クジラの進化
海のプランクトン 人の細胞 ルイセンコ学説 キツネがペットになる日
ベリャーエフ キャメル・ロード 白雪姫と7人の小人達

バッタを倒しにアフリカへ

バッタ博士がバッタの論文を書くため単身アフリカへ。そこでは壮絶な世界が待ち受けていたが、3年後には人間的も大成長を遂げ押しも押されぬ虫博士としての地位を獲得する成功物語。ノンフィクション科学冒険談で著者・前野ウルド浩太郎さん自身の体験談。
まず、先ずは前野博士が単身アフリカに渡るキッカケから。日本では大学院で博士号を取得したのち数年間、自分で職を見つけて働く口を探さねばならない。昔なら大学院を卒業後、大学の助手になる道もあったが、現在では博士の数が多くなり、国の研究機関や大学には収まりきれない。一般の企業では、博士の需要は学問分野にもよるだろうがそんなに多くないので、一般の企業に入ることは学問への道をあきらめることに通じる。このことは「ポスドク」問題として知られているようだ。欧米諸国では、博士たちを有効に活用する社会システムが整っているが、日本は、その面で大幅に遅れているようだ。
前野博士は、子供時代に読んだ「ファーブルの昆虫記」にあこがれ虫一筋に研究してきた人。アフリカ行を決心したのもユニークな論文を書き就職の審査に通ること。ここで論文が書けなければ研究者への道を断念しないといけないと決死の覚悟のアフリカ行き。
サバクトビバッタ ところで博士の研究テーマは、昆虫の中のバッタ、そのバッタの中でも「サバクトビバッタ」。ほとんどこれ一筋。このバッタは古代から「神の罰」と言われるほど恐れられており、数年に一度大発生して農作物から草木の葉までおよそ緑のものをことごとく食い尽くす恐ろしい代物(しろもの)です。蝗害(こうがい)という言葉もあり、中国にもあったのか。このバッタは2つの形態を持ち、常時は孤独相という形で比較的おとなしく棲息しているのに、密生して発生すると群生相言う形態に変化する。はじめはこの二つは全く別の種と思われていたのだが、1921年ロシアの昆虫学者が、棲息密度が混み合うと相変異することを突き止めたという。左の写真では、上が孤独相で保護色の緑色をしているが下は黒っぽい色になっている。本来は同じ種のバッタだ。
因みに、バッタとイナゴは相変異(そうへんい)するか否かで区別するのが国際的ルールらしい。相変異するのがバッタ(Locust)、しないのがイナゴ(Grasshopper)だそうだ。となると、日本のショウリョウバッタ、オンブバッタなどは相変異しないのでイナゴの仲間となる。サバクトビバッタの研究は、日本ではあまり知られていないが、ヨーロッパ諸国では相当な研究がおこなわれている。しかし、ほとんどは室内研究で現地調査はあまり行われていないらしいということが着目点。しかし、それでだけ困難もあるというわけ。
そこで博士が選んだ国、サハラ砂漠の最西端の国モーリタニア。英語の通じない国で、公用語のアラビア語もフランス語も分からないまま入国する。当然失敗の連続、また、期待したバッタの大発生も無い(コンなこと期待してはいけないね)。とうとう準備した資金も枯渇した時に、自分自身を相変異をすることを決める。論文を一時棚上げし、広報活動を始めるのだ。国内のサポーターに広くアピールする。子供たちはもちろん大人でもバッタが大好きな人沢山いるんですね。これが大成功し、なんとか研究を続けることができ、日本での研究者の地位も確保する。でも、ここまで来るまでに本当に沢山の人々の支援があったんですね。特に、最後まで暖かく支援を惜しまなかった、モーリタニア国の研究所ババ所長さんの功績は感動ものです。ウルドの称号はババ所長が前野氏が現地で活動しやすいように与えたものだそうです。バッタの駆除は、日本の外務省もモーリタニア国との外交上の重要テーマと認めてくれたようです。さらなる前進が期待出来ますね。
【バッタを倒しにアフリカへ;前野ウルド浩太郎著、光文社新書】
ショウリョウバッタ オンブバッタオンブバッタ

【追記1】
専門家というものどうしても視野が狭くなりがち、研究者というものだって社会の一員としてやっている以上、自分の研究を社会に役立ててもらわないと存在価値がない。出世競争だけに目がくらむと何処かで行き詰る。前野博士も自らの相変異を見事に成し遂げ、日本を代表する立派な学者に成長したですね。相変異をした後のこれを支えてくれた人たちの活躍も大したもの。でも、研究の目的はトビバッタの大発生の仕組みの研究、なんとか食い止めたい現地の人々の心と裏腹に、大発生を心待ちしているのは頂けない気もしますね。
【追記2】
相変異があるのはバッタだけだろうか。進化の歴史の中の秘密として他の生物、もちろん人間も含めて組込まれているのでは無いか。人の心にも「個人相」と「大衆相」があるぞ。個人相の時の人間は、個性を互いに尊重し、自由を愛し、色々なことを自分の頭で理解しようとするが、大衆相の人間は「一致団結」とか「一億〇〇」等の威勢の良い掛け声や、国やマスコミの強いリーダーシップを求め、自分の頭で考えることを嫌い他人の出来合いの意見を尊重し、社会の他の構成員にもそれを強要する(本当は自分が洗脳されていることに気がつかない)ようになる。経済が停滞し、社会が不安なるとファシズム(集団主義)が台頭してくるのは、こうした理由がありそうだ。人の場合「大衆相」は、往々にして自滅への道を取ることが多いので、気を付けて社会を観察してください。

地球の歴史・生命の歴史
scienceの部屋---はじめに
生物の世界

藻類とは

藻類(そうるい)
みなさんは「藻(も)」と聞くと何を想像しますか? 川底で揺れる川藻のたぐい、あるいは水槽に入れる小さな水藻かもしれません。しかし、藻の仲間は私たちが想像する以上に多彩です。単細胞のクロレラみたいな小さいものも、昆布やワカメみたいな大きな海藻もも全部藻類です。
生物系統樹 つまり、藻類とは光合成をする生物からコケ植物、シダ植物、種子植物(裸子植物、被子植物)を除いた生物全部。つまり、分類学から言えばその他大勢。だから、藻類という言葉の中には極めて多種多様な生き物が含まれていた訳です。
昔は生物と言えば、動物と植物との2分法。動物は自分で動き回り(動けないものもいるのに)従属栄養で、植物は光合成を行う独立栄養だ。でも、遺伝子解析が進み系統分類法が整理されてくると、全く異なった生物の進化系統が見えてきました。今小学校では、キノコなどの菌類は動物でも植物でもない全く別のグループとされています。そのうち藻類も植物ではないと、仲間外れになりそうです。それじゃーあんたは何なのさ?
最近注目されている、「ミドリムシ(ユーグレナ)」は、緑色の色素を持ち光合成を行うのに、2本の鞭毛をもって泳ぎ回る。「あなたは一体動物なの植物なの。」、実際は、今まで想定されていた動物でも植物で菌類でもない。最近の系統図を見て下さい。
生物系統樹 この図で気がつくのは、動物も陸上植物も菌類も多種多様な生物の中のほんの一部です。残りの大部分がいわゆる「藻類」ということでしょう。大型の海藻や淡水藻を除けば大部分は単細胞生物です。
ここでもう一度、生物の進化を復習して見ましょう。地球上で最初に現れるのが古細菌の仲間。その後真正細菌が登場し、その中で藍藻(シアノバクテリア)が酸素放出する型の光合成を開始します。酸素は当時の他の生命にとっては猛烈に有毒。古細菌の一部は、真正細菌を自分の体の中に取り込むことで共生を図ります。このようにして真核生物が誕生したと言われています。でも、真核生物も単細胞の方が多いんです。この合体の仕方は色々な方法が試行錯誤されたようで、その結果多種多様な生物が存在しているようです。

地球の歴史・生命の歴史
scienceの部屋---はじめに
生物の世界

バイオエアロゾルとは

エアロゾルとは大気中に漂う微粒子のこと。一般にはこれら微小な砂粒のような鉱物粒子のように考えられてきたが、実際にはこれらの微粒子にはカビや菌類の胞子など生命由来のものも多く含まれているという。地球の生命は地上や海水中だけでなく、大深度の地下や超深海等今までの想定を超えて広がっていることが分かってきている。大気中にも色々な微生物が存在しており、地球環境にも多大な影響を与えている可能性があるというので驚きだ。
地上に降る雨は、上空で微小なエアロゾルを核として水滴や氷の粒を形成して雲を造り、これが雨や雪を降らす基となっていることは分かっている。しかし、雲ができる詳細なメカニズムはまだ解明されていないのだそうだ。以下の話はNHKのサイエンスZEROで紹介された話。こういうまじめな研究にはもっと注目が集まってもいいと思うのですが。
【世界屈指の空飛ぶ微生物ハンター】
冒頭の画面。6月末。梅雨時のジメジメした森の中に、その研究者はいた。落ち葉の中から見つけた小さなキノコをつまむと、茶色い粉が吹き出した。「これや!バイオエアロゾルや!」。お目当ては、きのこそのものではなく、吹き出す粉、胞子。「キノコの胞子が空に浮かび、雨を降らしているかもしれないんです。」
胞子を見ながらうれしそうにそう説明してくれたのは、金沢大学の牧輝弥さん。キノコの胞子のような、微生物の研究を行っている。この研究が将来天気予報にも大いに活躍するかもしれないのだ。バイオエアロゾルとは、空気中を漂う微生物やその死骸、体の一部など、生き物に由来する小さな粒子のこと。特に胞子と呼ばれる微小粒子が大きな役割を持っているようだ。
サンプルテスト 金沢大学の研究室を訪ねると、薄暗い部屋の片隅にあった大量の容器を見せてくれた。中には、黒や白、ピンク色の綿のようなものが。これらはすべて、牧さんが空気中から採取したバイオエアロゾル。カビやキノコの胞子などの真菌や、バクテリアといった、微生物だ。
もともと水中の微生物で、環境や健康への影響を調べていた牧さん。バイオエアロゾルとの出会いは、10年前におこなった黄砂の観測。「栄養が少なく、微生物はほとんどいないとされていた上空でとった黄砂の砂粒に、微生物がいたんです。それが衝撃的で、不思議で、調べてみたいと思いました。」。以来、気球やヘリコプターまで使って、400種類以上ものバイオエアロゾルを集めてきた牧さんは、世界屈指の「空の微生物学者」だ。牧さんがとらえた微生物の中には、なんと納豆菌も。地元の業者と協力して、実際に納豆を作り販売もしているというから驚きだ。上空3000mで取った菌で作ったからか、空のようにさわやかで、クセのない味になり、好評だとか。「さわやか納豆」ですか、売れるかもね。
最近、アフリカのサハラ砂漠から地球を半周して飛んでくる砂塵がアマゾンの熱帯雨林の栄養になっているなんて言う研究もあるようだ。

しかし、空に漂う微生物が、天気とどんな関係があるのだろうか。なぜ雨が降るのか-身近な雲のナゾ解明に一歩前進!?私たちは、牧さんの実験を見せてもらうことにした。牧さんが持ってきたのは、バイオエアロゾルを入れた液体。これを、冷却装置で少しずつ冷やしながら、凍るのを観察するという。「-4℃から始めよう...-5℃、-6℃...-8℃。だめか」。気にしているのは、凍る温度。これこそが、天気との関係を示す手がかりだ。私たちの頭の上に浮かぶ雲。あの雲が、どうやってできるのか。実はその問いには、科学者たちもまだ完全には答えられない。そもそも、白く見えている雲は、水蒸気が集まった「水の粒」と「氷の粒」の集まり。これらに重要なのが、バイオエアロゾルのような空気に浮かぶ微粒子だ。微粒子のまわりに水蒸気が集まり氷になると、蒸発しにくくなり粒として存在できるようになるからだ。つまり、均一な空気で微粒子がなければ雲が生成されず、雨が降らないということだ。
【犯人を絞り込め】
雲のできる高さ しかし、この雲の粒を作る微粒子には、大きなナゾがある。砂の粒など無機物の微粒子は、-15℃という低温で、氷の粒を作ることがわかっている。ところが、空気の温度が-15℃よりも高い場所でも、雲は発生しているのだ。-15℃の気温はかなり上空だけど、実際の雨雲はもっと高温の低いところで発生している。ではいったい、鉱物よりも高い温度で凍り、雨を降らせる雲の粒になっているのはいったい何なのか。その候補となっているのが、バイオエアロゾルだ。地上では、すでにおよそ-5℃で凍る微生物が見つかっている。牧さんは、空にもそうした、-15℃よりも高い温度で凍る微生物がいるはずで、それこそが雲を作り、雨を降らせていると考えている。もしこれが突き止められれば、気象予測をより正確にするために必要な、雲のメカニズムが解き明かせることになる。
今回の実験では、幸運にも、牧さんも驚きの発見に立ち会うことができた。「うわ、もう凍り始めた!こいつ、ホンモノですよ」冷却装置の示す温度は、なんと-7℃。能登半島の上空3000mで採取したものだった。その後、温度や湿度などを、より空の環境に近い状態にして再度実験。それでもやはり、-15℃よりも高い温度が示された。「もしかしたらこれが、上空で雲を作るのに働いていたかもしれないです」。雨を降らすバイオエアロゾルの候補の手がかりをつかんだ牧さん。さらに詳しい正体を、DNAから調べていく予定だ。
【不思議な"糸"が示す バイオエアロゾルの発生源】
牧さんは並行して、バイオエアロゾルがどこから来るのか、明らかにしようとしている。雨を降らせるバイオエアロゾルが、どこから来て、どこにどのくらい飛んでいくのか分かれば、どこに雨が降るのか、どのくらい降るのか、予測が可能になるかもしれないからだ。
茨城県の筑波実験植物園で行われた調査に同行した。今回、バイオエアロゾルの採取を行ったのは、森林内の地上付近と、そこに面した、上空約20mの建物の屋上、そしてヘリで向かった、森の上空500m。3つの高度でとれたバイオエアロゾルに、手がかりがないか探そうというものだ。3日間にわたる調査で採取したサンプルを、顕微鏡で観察した牧さん。ここでも驚きの、新たな発見があった。「なんじゃこりゃ。こんなもんとれてますよ。いままで見たことないやつが」
菌糸 そこに映っていたのは、小さな青白い粒から出た、細長い糸のようなもの。菌の体の一部、菌糸だ。上空500mのサンプルで見つけた菌糸。なんと、上空約20m、そして地上でも、似た形の菌糸が取れていた。「森の中の、菌糸を伸ばした微生物が飛んでいるんです。確実ですよ」。3つの高さで同じ種類と思われる微生物が見つかったということ、それは地上から、少なくとも上空500mまでは、空に向かって微生物が飛んでいる可能性があるということだ。
今回、「雲となり雨を降らせるバイオエアロゾル」、「バイオエアロゾルの発生源」、この二つを明らかにする大きな手がかりを見つけた牧さん。これからおこなわれるという、より詳しい分析で、さらに雨を降らせるバイオエアロゾルの正体に近づけると考えている。 「あまたいる微生物の、ほんの一部分を調べたに過ぎません。きっと世界にもまれに見る成果が上がってくると信じています。」
微生物学者の、気象の謎への挑戦はまだまだ続く。牧さんの研究が、私たちの生活を変える日が来るのが楽しみだ。
なお、森の中の微生物は、森の中の薄暗く湿った環境が大好きだ。菌糸を飛ばせて雨を降らせることで森の環境を向上させ子孫の繁栄を図っているとしたら。生命の環境への適応力は大変なものだ。地球の歴史を見れば分かる通り、生命は環境に適応するだけでなく環境を作り変える役割も果たしているのです。

scienceの部屋---はじめに
生物の世界

クジラの進化

クジラは変わった哺乳類だ。昔は、魚の仲間としていた人たちも多かったようだ。でも、古代ギリシャのアリストテレスはその著書『動物の発生』の中で、クジラ類は鰓呼吸ではなく空気呼吸(潮吹き)をすること、クジラ類は胎生であり授乳をすることなどから、人類や陸上哺乳類とともにクジラ類を胎生動物(現在の哺乳類に相当)という分類群にチャンと収めている。
哺乳類のご先祖は、古生代に一部の魚が陸上に進出して、両生類、爬虫類と進化して、陸上に適応して来たのに、クジラ類は4足歩行する哺乳類を先祖として、淡水の浅瀬から深海へと全く逆の進化をして、海の生態系の頂点に登りついたわけだ。しかし、クジラ類の起源と進化史は哺乳類進化史上の大きな謎とされてきて、最近ようやくその進化の道筋が分かりかけてきたらしい。
菌糸 6500万年前に、恐竜を始め、海の生物たちも大絶滅。インド亜大陸がユーラシア大陸に衝突する少し前、その間にはテチス海という海があった。1980年代以降、その周辺の地域(パキスタン等)からさまざまな進化段階のクジラ類の化石が見つかり、初期のクジラ類の進化史が解明されたということらしい。その結果、クジラ類の祖先は陸生の原始的な”偶蹄類”であること、クジラ類に最も近縁な陸上哺乳類はカバであること、分岐分類学ではクジラ類は”偶蹄類”の中の一系統に過ぎないことが判明した。だから、現在はかつての偶蹄類とクジラ類のすべてを包括した概念として、鯨偶蹄類という分類名を用いる必要があるらしいが、クジラとラクダではあまりにも外見が異なるので同じ分類に属すると言われても面喰いますね。
クジラの祖先たちの復元図を示します。興味深いのは、最初期の有蹄動物の祖先は少なくとも一部が肉食ないし腐食性であったらしいこと。彼らから分化した"偶蹄類"や奇蹄目はその後の進化の過程の中で完全な植物食動物へと変貌を遂げ、本来の肉食動物的特徴を失う。対照的に、現在でもクジラ類は肉食動物(プランクトン食、魚食性のものも含む)であり、肉食動物としての特徴を多く残している。これは、クジラ類が海中で恒温動物として生きていくためには、栄養価の高い動物質の餌のほうが好都合であるためと考えられている。陸上でのクジラの先祖たちは、それほど目立って巨大な存在ではないのに、現在では史上最大の動物として巨大化の進化をとげ、海生動物として大成功を遂げた種と言えそうだ。その進化の速度は、著しく速い。当然環境への適応の結果であるので、何がこのような進化を生み出したの地球環境との関係を調べることが大切なことだ。
生物の世界

海のプランクトン

陸上の植物は大きな木や、地表を一面に覆う草たちで、淡水に棲む単細胞の藻などは極めてわき役的な存在でしかない。実際、我々が発生するCO2の半分はこれらの大きな植物に吸収されているようだ。では残りの半分は?こちらの半分は海で吸収されているという。 キートケロス属 海の主役は?海は地表の3/4を占める。しかし、光合成は海の表面でしか行えない。まあ、これは陸地でも同じ。海は平均では、深さ3000m程度あるが、太陽光が届くのはせいぜい200m程度まで。光合成を行う、一次生産者と言われる植物プランクトンは、単細胞のまま進化し、海面を浮遊する道を選択したということだ。光の届かない深海では、背の高い昆布もワカメも育たない。海面を漂う小さなプランクトン(たいていは単細胞)だけが生存可能だ。海での生物の進化を解明していくためには、どうも単細胞の藻類たちを研究していくことが大事なようだ。ところが、藻類に関する我々に知識は異常に乏しい。
キートケロス属 藻類とは、
藻類とはで示したように。藻類とは何かについてもまだ解明が済んだわけではない。進化の系統図を見てもらえば分かるように、藻類の分類は陸上の植物や動物達とは全く異なった進化を歩んで来たらしい。  海と陸をつなぐ進化論(講談社Blue Back;著者=須藤斎)は面白い視点を提供してくれている。著者は、珪藻の研究をしているかた。そもそも珪藻とは何か。珪藻とはいわゆる単細胞の植物プランクトンで、海の光合成を担っている3大生物(珪藻、円柱藻、渦鞭毛藻)の一つ。海底の堆積物をボーリングしてサンプルを取り出し、顕微鏡でその種類や数、変遷を調べるのが彼の日課のようだ。彼の専門の珪藻も小さな生物だ。0.01~0.03mmぐらい。それでも珪酸(シリカ)でできた硬い殻を有していて、殻の形も実に複雑。珪藻は、上にあげた藻類の分類ではストラメノパイル (Stramenopiles)と言うところに位置している。と言っても良く分からない。この珪藻の一種で、キートケロス属と言う仲間がいる。この珪藻とクジラが共進化してきたというのが須藤氏のスケールの大きな仮説だ。 生物の進化は地球環境の変化に応じて変化する。特にプレートの移動による大陸の移動は地球環境に大きな影響を与える。新生代に入って地球は寒冷化する。南極北極が氷に覆われる。海流の循環が変化する。キートケロス属という珪藻は、休眠胞子と言うものを作って、深海底の底で数か月~数年眠っていることが可能な種だ。こんなことが可能な藻類は他にない。だからこの時代、時折生じる湧昇流にのって、表層に上がって来て爆発的に発生する。この時深層の養分も同時に巻き上げられる。するとこれを餌にするオキアミ等の動物プランクトンも大発生。結果としてクジラ類も急に進化した。珪藻(キートケロス属)の繁栄がクジラ類を繁栄させた可能性がある。
オキアミ 一方、陸に目を移すと大森林がなくなり草地が増える。草地で特に進化したのがイネ科の植物。イネ科の植物は体に珪酸(シリカ)を蓄える。もともとシリカは地中に沢山ある。この硬くて食べにくい草を食べることで進化したのが、牛と馬とか。これらの植物の遺体や動物の糞などが大量に海に流れ込む。珪藻は自分の殻をシリカから作らねばならない。結果として珪藻類が繁栄したのかも。人類だってイネ科の植物(小麦、稲、トウモロコシ)のおかげで発展したのだから、そのもとは大陸の移動だったという壮大な話。でも、この話かなり真実味があるでしょう。そういう仮説が無いと何故、クジラがかくも急激に形を変えて繁栄したのかが説明がつかないでしょう。風が吹けば桶屋が儲かるという例えに似てなくもないが、今後裏付けとなる証拠が揃って来れば定説となるかもしれませんね。

生物の世界

人の細胞

ヒトの成体は約37兆2000億個(37.2×1012)の細胞から出来ている。ということは細胞の数から1を引いた数の細胞分裂が行われてきたことになる。最初の受精した卵子は1つの細胞。それが2つ、4つ、8つと分割し、最終的にこの驚異的な数に到達する。 人生を60年として単純な割り算を試みてみよう。
  37.2×1012個÷60年÷365日/年÷24時間/日÷60分/時÷60秒/分=19,660個/秒
つまり、平均すると毎秒約2万個の細胞が休みなく分裂を続けていることになる。でも、この仮定はあり得ない。細胞は、分裂した直後は重さは半分になるはずであるが、すぐに栄養を取り入れて元との大きさに戻るだろう。細胞が幾何級数的な増えていくなら、60歳の人は59歳の人よりも2倍ぐらい大きくならないとつじつまが合わないから。
だから、細胞分裂は人が若い時、特に幼児の段階で、イッキに進み、人生の後半での細胞の数はほぼ一定なのでしょう。また、細胞は分裂する度に数が増えるとすると、それに見合った細胞の死も考えないといけないでしょう。
では、次の細胞が倍々ゲームのように一回の分裂ごとに2倍に増えると考えるとどうなるでしょうか。初めの受精卵の時は、1個(20=1)の細胞です。何回分裂すれば成体の細胞数になるのでしょうか。
  2n=37.2×1012を満たすnを求めるといいですね。こういう時は対数を使うといいんですね。関数電卓が必要ですが、対数には底が10の常用対数と、底e(オイラー数)の自然対数があるので間違えないで下さい。
   n log102= log10(37.2)+12、   ここで、log102=0.30103、 log1037.2=1.571
これからnを求めると、細胞分裂の回数は45回となる。受精してから、45回分裂すれば、成人の細胞の数になる。実際、245=35兆個。つまり、1日1回の速度で分裂を続ければたった45日程度で成体の大きさまで成長できる。そう考えると、そんなに難しいことでもあなさそうだ。そう考えると細胞の数が約40兆個存在することは脅威でもなんでもないことだ。
この大きな数に関しては、有名な笑い話がある。曽呂利新左エ門という豊臣秀吉のお傍衆が、何かの理由で秀吉に褒められて褒美をもらうことになった。「そちに褒美を取らせよう。何なりと申して見よ。」「はい、米粒を頂きたく。最初の日は一粒、次の日は二粒、三日目には四粒、…」、「ほう、米粒か。そちは、欲が無いのう。」、結果はもうお分かりの通り、45日目には約40兆粒の量。米粒は細胞と比べるとかなり大きいので、大変な量になるんでしょうね。
しかし、細胞はいくら分裂しても単なる細胞の集まり。どこかで役割分担をして組織を作らなければ何の意味もありません。発生の初期の細胞はES細胞などと言って、何にでも成れる能力がある代り、役割も決まっていない。どこかで心臓になったり、目になったりしないと役に立たない。更に、最初の生物は皆、単細胞生物であったことは分かっている。それも地球の歴史の中ではほとんどの時間生物は単細胞の生き物として進化してきている。単細胞の生き物はそれ自体で完結した生き物で、摂食、排泄、呼吸と言った、働きを独立して行うことが可能だ。それを何故、単細胞生物が集まって多細胞生物が生じたのか。多細胞の各々細胞は大抵単機能で他の細胞の助けが無いと生きていけないリスキーな存在だ。多細胞生物の細胞がどのような仕組みで分業をなすようになったのか、まだまだ生物の世界は謎が多い。

生物の世界

ルイセンコ学説

ルイセンコ学説は、ソビエト連邦の時代に社会主義国家を支配した重要な生命観。本来は生物の進化に関する仮説だったのが、いつの間にか政治思想に転嫁し、社会主義国家の経済破綻に大きな寄与をしたようだ。
事の始まりである。ルイセンコ論争とは、環境因子が生物の形質の変化を引き起こし、その獲得形質が遺伝するという考え。生物が進化していくことは認めているのでダーウィンの進化論を否定している訳ではない。その点はキリスト教原理主義のような進化論を否定する論とは一線を画す。メンデルのよって証明された遺伝の法則。親の形質を子が受け継ぐ。でも、せっかく新しい性質を親が獲得しても子に伝わらなければ進化という現象は起こりえない。ダーウィンの先輩にラマルクという偉人がいた。彼の基本命題は、「獲得形質は遺伝する。」というもの。このことは、遺伝の研究をしていた学者たちに猛反撃を受ける。要は、あなたがジムで筋トレすれば、あなたの孫はマッチョマンになるか。今では、「獲得形質は遺伝しない。」と言うのが科学界の常識だろう。 しかし、あなたが猛勉強して音楽家として有名になれば、自分の子供にもピアノを習わせたり、いい先生に着けたり努力するので、その結果音楽一家といったものが形成されることもあるという事実もある。だから、全く否定される考えでもなさそうだ。
ルイセンコ スターリン 毛沢東
ルイセンコの学説はヨシフ・スターリンによって支持されたため、政治運動に転化してしまう。当時のソ連の生物学会ではルイセンコの学説に反対する生物学者は処刑され、強制収容所に送られるなど粛清された。更には他の学問に飛び火して、その結果、多くの学者が、反革命的ブルジョワ思想の持ち主をして公職から追放され、シベリアなどに流刑となったりしたと言われる。スターリン失脚後もフルシチョフもこの考えを支持していたので、ルイセンコ主義は1920年代末に始まり、1964年に公式に終焉した。ルイセンコはレーニン全ソ連農業科学アカデミーの長として活動した。ルイセンコ主義は1920年代末に始まり、1964年に公式に終焉したとされている。
ルイセンコ主義の疑似科学的発想は獲得形質の遺伝性を仮定していた。ルイセンコの理論はメンデル遺伝と「遺伝子」の概念を否定し、自然選択を否定することでダーウィン進化論から逸脱した。ルイセンコ主義は育種や農業において並外れた進歩を約束したが、それらが実際に起こることはなかった。後天的に獲得した性質が遺伝されるというルイセンコの学説は努力すれば必ず報われるという全体主義国家には都合のよい理論でもあるが、マルクス主義のマルクス自身がダーウィンの進化論(ラマルク的な)の影響を強く受けていた(彼の友人のエンゲルスが証明している)とも言われており、マルクス主義とは相性が良かったのかもしれない。
スターリンの思想は、中国に飛び火して、毛沢東による文化大革命を引き起こす。北朝鮮の「主体思想」とやらもその影響らしい。その結果、これらの思想に汚染された国では、著しい農業生産の低下と経済の停滞を引き起こすことになったという事実は忘れてはならない。

生物の世界

白雪姫と7人の小人達

物語の舞台はかなり大昔のこと。一人の少女が森の中へ逃走する。理由は分からないが何か命の危険があったのでしょう。一人で逃げても当時の森は、野生動物もいて大変危険。でも、更に危険な存在は一人暮らししている人間がいる場合だ。彼らは魑魅魍魎(ちみもうりょう)、鬼、悪魔、魔女だのと呼ばれて人々から恐れられているが、実は彼ら自身が逃亡者、見知らぬ人と出会うとつい本能的に敵意をむき出しにして攻撃してしまう。
幸い、森には優しい先住者がいた。7人の少年の兄弟達だ。彼等も何らかの理由で森の中に逃げ込んで来たのだろう。しかし、兄弟が力を合わせることで森の中に生活の場を確保したようだ。 何故、彼らは小人といわれるのか。背丈は当時の人類の標準から言えば、やや低いかも知れない。それよりも、手足が細く、全体に華奢な体つき。生格も温和で人懐っこい、また非常に好奇心が強い。おしゃべりが大好き。いわば子供っぽい性格であった。 だから、7人の兄弟たちは少女を大歓迎で受け入れて、仲間の一人に加える。グループは8人になり、少女は母親役、姉、妹、友人とすべての役割を一人で引き受ける。以後、少女の名をエバと呼ぶことにしよう。
彼等の住む世界は8人だけが総てで、それ以外は異次元空間の野蛮人の住家だ。だから、彼らは世界を存続させるため、自分達の子孫を作ることを考えたであろう。ある日、エバは兄弟たちの一人の愛を受け入れる。また、同時に他の兄弟たちの愛も公平に受け入れる。子供が無事生まれる。エバは、また同じように次の子も身ごもる。世界の平和のためなら父親が誰かは不明の方がいいに決まっている。子育てだってみんなで協力してやればうまく行く。
こうして、彼らの子供たちが更に次の子供たちを造る。子供は世界の財産だ。誰が親かは関係なく公平に育てられる。例え拾ってきた外の世界の捨て子でも、珍しい客人として大事に育てられた。こうして一族は見る見る間に大家族に発展した。
最終的に7人の兄弟達と1人の少女の純粋な愛と勇気、集団への帰属意識、知的好奇心等が結局、周囲の類人猿たちを駆逐して新しい種族をの世界を造り出したのでしょう。最後に愛は勝つということですか。
エバの家族は、その後大発展して、生まれ故郷を後にして、地球のあらゆるところに住むようになりました。でも、彼らの「世界は一つ、人類は皆兄弟」という理念が失われ、互いに相争うようになって来たという問題も発生しています。
エバが生きていた時代、まだ衣服は発明されなかったようだ。エバは、その成熟した美しい体を、7人の兄弟たちに四六時中晒していたと思われます。寒い冬には当然肌を寄せ合い、他の兄弟達がしているように互いに性器にも触り合うぐらいのことはしていたでしょう。性交はエバがOKならいつでもOK。人は当時絶滅の危機にあったのですから、子孫を効率良く残すことは遺伝子にとっては最大の課題。セックスを繁殖以外の目的、娯楽やコミュニケーションの手段として使うのは、類人猿としては人だけかと思いきや、ボノボにもそのような行動がみられるらしい。しかし、これも間接的に繁殖を増やす手段にもなっているので遺伝子の技としては辻褄が会っているかも。

生物の世界

キツネがペットになる日

キツネは哺乳綱(食肉目=ネコ目)イヌ科イヌ亜科と分類されており、犬とキツネはもともと系統的に近い動物だ。でも、今では犬の先祖は狼であったことは確実視されている。オオカミは集団で狩りをする。人と同じ社会生活の動物。一方のキツネは単独で行動する。でも、人懐こいキツネを代々掛け合わせる品種改良を続けていると、抱き上げても喜ぶような人懐こいキツネを造り出すことに成功したのだ。一方、凶暴な性格のキツネを代々掛け合わせて行けば、凶暴な性格のキツネを造ることも出来ることも分かった。この研究は以前NHKでも紹介されていたが、シベリアにある遺伝研究所の動物の家畜化の研究プロジェクトの一環として今でも研究が続けられている。
ルイセンコ fox1 fox2 fox3
もともと、この研究所はドミトリー・べリアエフという高名な遺伝学者によって創設されたもので、動物の家畜化に関する研究では世界のトップランナーなのだ。ソビエト連邦の時代は、非常に特殊な事態がいくつも絡まり、生物学の世界では正当な考えとされていた遺伝の考え方が、ブルジョワ反動的世界観と結びつけられ、多くの学者が追放され、処刑されたり強制収容所の入れられたりと大変な時代となったらしい。
この責任は、当時台頭してきたトロフィム・ルイセンコという新参の農学者にあったとされている。しかし、真の原因は当時のソ連の指導者ヨシア・スターリンが直面した深刻な食糧不足にあったようだ。急激な農業の集団化を強制的に実施したことが大飢饉の原因だった。スターリンには何としても食料不足を解消する手段が欲しかったようだ。鉄のカーテンの向こうからの援助も期待したくない。標準的なメンデル遺伝学では改良小麦など、到底ありそうもない突然変異を期待しないと不可能だ。遺伝学者たちが、首を縦に振らない中、この新参の農学者が、適切に環境要因を操作すれば遺伝的性質が望ましい形質を持つような方向付けが可能だと主張し、スターリンがぞっこん惚れて飛びついたの実態のようだ。後継者となるフルシチョフにも多少の影響を与えたようだ。
しかし、ルイセンコの考えが間違っていたのか、それを元に実施された方策が不適切だったのが、更にもっと別な経済的な要因があったかは分からないが、ソ連邦の農業生産は結局向上せずに、ソ連邦は崩壊してしまう。遺伝の考え方が、ブルジョワ反動的世界観と結びつけられ、多くの学者が追放されたのは、中国の毛沢東思想も同じルーツみたいだ。
ところで、ベリアエフ氏はシベリアに左遷される。しかし、彼は中央の監視が届かないことを逆手に取り、正統な遺伝研究の基地をシベリアに作り上げることに成功する。キツネの研究は、犬の家畜化の過程を解明しようという意図がある。
犬の先祖のオオカミは、人と同じく集団で狩りを行うライバル同士だった。人もオオカミも互いに近くで生活するようになると、狼の中には人間が近づいても平気な個体が出現するようになる。自分が敵意を示さなければ、相手も敵意を示さない。人を見たら唸る狼より餌貰って尻尾振っている個体の方が生き残る率が高い。でも、その結果家畜化された犬はずいぶん体の形も変わったね。この進化は人類が犬を家畜化してからだから、せいぜい1万年以内に起こった変化だ。化石になった骨だけ見たら同じ種とは思えない。と言うより、人が動物を家畜化するまでは、起こりえない変化だ。
動物の家畜化を研究することは、何故生物か進化したかを解明するための重要なヒントを与えてくれる。犬の家畜化は、遺伝子自体はそんなに変化しなくても、その表現形態は大きく変えられる。しかし、いくら人間が努力しても犬は猫には代えられない。遺伝子と言うのは非常に保守的なものだ。犬とキツネが分岐してもその共通先祖の遺伝子はキチンと引き継がれている。つまり、キツネも犬と同様に品種改良してペットに出来る。メンデルの遺伝学では、進化の原動力を突然変異だけで説明しようとしていた。突然変異自体は基本的に遺伝子にとっては迷惑なことだ。いわゆるコピーミス、こんなものが進化の原動力か。でも、いま研究されている遺伝アルゴリズム。適当にコピーミスが発生するのを期待している面もない訳ではない。ダーウィンの進化論。未だに答えの出ていない面白い話題なのです。

生物の世界

キャメル・ロード

シルクロード。古代からユーラシア大陸の東と西を結ぶ重要な通路だ。ただし「シルクロード」の概念は一義的ではなく、広義にはユーラシア大陸を通る東西の交通路の総称。具体的には北方の草原地帯のルートである草原の道(1)、中央の乾燥地帯のルートであるオアシスの道(2)、インド南端を通る海の道(3)の3つのルートをいう。しかし、狭義にはもっとも古くから利用されたオアシスの道を指してシルクロードといいこの方が一般化しているだろう。オアシスの道は中国からローマへは絹、アルタイ山脈から中国へは金が重要な交易品となっていたことから、このルートは「絹の道」あるいは「黄金の道」と呼ばれており、のちに草原の道や海の道が開けるまでは最も合理的な東西の交易路であった。その一部は2014年に初めて「シルクロード:長安-天山回廊の交易路網」としてユネスコの世界遺産に登録されているとのこと。
camel1   camel2
シルクロードを移動する交通手段は何だろうか。今なら四輪駆動の車だろうが、当時はそんなものは利用できない。馬車を使おうにも砂漠やぬかるみにはまって動けなくなるのが落ちだ。最初は徒歩が主流だったかも知れないが、そのうちに馬の背中に荷物を載せたとも考えられる。でも、実はもっと有効な手段がある。それがラクダの利用だ。
ラクダは人が家畜化した動物の中では最大のもの。例外は東南アジアでの象ぐらい。ラクダは野生の物から余り形が変わっていない。でも、ヒトコブラクダとフタコブラクダの区別はある。フタコブラクダの方が若干寒冷な気候に強いこと、どちらが優れているという訳でもなさそうだ。 なぜ、シルクロードを移動する交通手段として優れているか。まず、ラクダは馬と比べて体が一回り大きい。だから大量な荷物を運べる。生格は我慢強く従順。水や食料の乏しい乾燥地帯でも何日も我慢できる。だからシルクロードはラクダの隊商たちが往復する道だったということだ。ヒトコブラクダは西側に多く、フタコブラクダは東側に多いとされる。中央アジアに行けば、両方のラクダが仲良く草を食んでいる風景を見ることが出来る。
東の中国側からフタコブラクダに積まれた商品は、中央アジアのオアシス都市で、ヒトコブラクダの背中の商品と交換し、また東に帰っていき、西から来たヒトコブラクダの背中に積まれた商品は、同じように東から来た商品に詰め帰られてまた、西に帰っていく。
ヒトコブラクダとフタコブラクダをかけ合わせれば、その子供はどうなる。メンデルの法則が成り立つんでしょうか。ミツコブのラクダが出来る心配は無いようだ。ラクダの隊商達にとってはコブの数はどうでもいい問題なんでしょう。しかし、ラクダの最大の役割は輸送手段なので、車社会になって来て、その役割がドンドン小さくなった行っているようだ。
ラクダは、イスラム圏では戦争にも使われていたようだ。騎兵ならぬ駱駝兵なんて言うのがあって、西欧の十字軍騎兵達は散々苦しめられたらしい。ラクダは馬よりも体が一回り大きい。相手方の馬は恐れをなして逃げ出してしまうらしい。だから、アラビアのベドウィン族などにとっては、ラクダはいまでも大変貴重な財産らしい。
世界の物流が、陸路から海路に転換していったことで、シルクロードの価値は低下してしまった。オアシス都市が衰退し、駱駝が無用の存在になりつつある。

一帯一路(いったいいちろ、拼音: Yídài yílù、英語: The Belt and Road Initiative)は、習近平総書記が提唱した経済圏構想で、史上最大規模のインフラ投資計画と言われている。どうもこの道は、鉄道が主体のようだ。しかし、シルクロードの復活という意味では注目できそうだ。それで、現代版のシルクロードは何を運ぶというのか。情報化時代。東西の人間の交流という面が最も大きな側面でしょう。

生物の世界

ベリャーエフ

銀キツネ ドミトリー·コンスタンチノヴィッチ·ベリャーエフ (ロシア語:Дмитрий Константинович Беляев; 1917年7月17日~1985年11月14日)はロシアの遺伝学者。
ベリャーエフは、田舎の牧師コンスタンチン·ベリャーエフと彼の妻イェヴストリア·アレクサンドロヴナの4人の子供の末子として生まれる。彼の兄弟(遺伝学者、のちにスターリンによって投獄され死亡)の仕事と環境がりベリャーエフに影響を与えたる。1934年、彼はイヴァノヴォ農業大学に入学、1939年に卒業した。そののち、かれは毛皮動物の繁殖の方法と遺伝学に取組む。
1941年から1945年まで、彼は第二次世界大戦に将校としてソ連軍に従軍し、2回負傷。 戦後、彼は再びモスクワの毛皮を作る動物の飼育のための研究室で彼の仕事を再開。1950年代のはじめ、かれは野生動物の家畜化で最も重要な因子は“おとなしさ”の選択的繁殖であるという仮説をたてた。1953年と1954年の間に、彼はロシア科学アカデミーシベリア分院のノヴォシビルスクの細胞学遺伝学研究所で、キツネの飼育実験を始め、1958年に彼はモスクワからノヴォシビルスクへ移る。 スターリンの迫害を逃れてシベリアに行ったのか、シベリアに左遷されたのか。
ベリャーエフ この間、彼は研究所の評判を高め、ソ連での科学としての遺伝学の発展に尽くす。彼は多くの国の大学の名誉学位を受け、1978~1983国際遺伝学連合の総裁を務めるまでに。

【キツネの選択交配と家畜化】
1950年代に、ドミトリ・ベリャーエフと共同研究者は銀キツネ(Vulpes vulpes)のうち人を恐れず噛み付かない個体を何代も選択交配した。 その結果、彼らの振る舞いだけでなく、その外観が野生のキツネと異なるキツネの群をつくりだした。約10から20世代そのような選択交配したキツネは、人を恐れず、尻尾を振りなついた。 見かけも著しく変わった。毛皮の色が変わり、耳が垂れるようになり、しっぽが巻きあがるようになる。2019年では50世代を超え犬の様に芸をするものも現れた。

当時、生物学者は、なぜ犬の毛色がオオカミと違うか調べていた。 ベリャーエフは彼のキツネの研究がこの疑問に関わりがあるのに気がついた。彼と彼の共同研究者は生化学的な測定をし、選択交配した狐のアドレナリンの水準が野生のキツネに比べて大幅に低いことを発見した。 それによって、飼いならされたキツネの振る舞いだけではなく、毛皮の色も説明できることになる。

科学者たちは、アドレナリンがメラニン色素の生産を変え、野生の動物ではアドレナリンの高い濃度のために抑えられていた遺伝的変異の発現のカスケードが、ホルモンレベルの低下のために起こるという理論を出した。 したがって、ストレス(高いアドレナリン)の役割は、遺伝子発現の調節もあると認識された。

その他、ベリヤーイェフの他の研究のテーマは多岐に渡っている。致死的な変異の抑制、 光周性の豚の不妊治療への役割、 ミンクの毛皮の色 、放射線による作物の突然変異、シベリアに適した穀物の亜種、抗ウイルス剤の製造等。
ベリャーエフは科学教育も重んじたらしい。 1961年以後、彼はノヴォシビルスク大学細胞遺伝学の講座だけでなく、学校の生物学のクラスでも教えた。 彼は教師のためのガイドを発行し、1985年、中等教育のための生物学の教科書の編集を指導したということです。生きていればノーベル賞ももらえたかも。残念ながらお亡くなりなっているようだ。

生物の世界

物理の世界

目次   
万有引力の話 静水圧とは 気体の状態方程式 運動エネルギーとポテンシャルエネルギー
気体の圧力を統計力学的に求める 相対性理論 量子力学の世界
12歳の少年が書いた 量子力学の教科書熱力学とエントロピー
裸坊達の部屋に戻る  

相対性理論

20世紀の物理学の2大成果としては、相対性理論と量子理論が挙げられるでしょう。量子論の方は大勢物理学の大家が成果を少しずつ積上げて行ったものですが、相対性理論の方は、天才アインシュタインがほとんど一人で作り上げていった感じのものです。相対性理論は、最初に完成された特殊相対性理論とそれから十年あまりの努力の結果生まれた一般相対性理論で構成されています。後者は、法則を記述するための新しい数学理論が必要だったので、数学嫌いの彼が、著名な数学者の助けを借りて猛勉強して、十年近くかけやっと完成したものだそうです。一生の間これほど勉強したことは無かったと本人も振り返っているそうです。真理を知ろうとする強烈なワクワク感があったのでしょう。

さて、最初の特殊相対性理論の方は、そんなに難しくありません。他の物理学者達も一歩手前までは達成していたようです。発想の転換が革命的だったのですね。それまでは、宇宙は、絶対静止した空間に単一の時間と言ったものがあるという前提がありました。でも、そのような前提では、光速が不変であることと、電磁波のマクスウェルの方程式が座標変換で不変にならないことを説明しきれないことから、時空(時間と空間の組合せ)が相対的にしか決められないことに気がついたそうです。
      このサイトでもいずれ、その具体的内容を紹介したいと思ってますが、もう少し中身を掘り下げるとともに、表現方法も検討したいので、もう少しお時間を下さい。

  • 相対性理論入門

  • 物理の世界

    万有引力の話

    万有引力の話 万有引力の話(2)…連続体の場合       地球エレベータ
    無限に広がった平面の場合 平板コンデンサー内部の電界と容量

    F=Gm1m2/r2 …(1)
    これぞ有名なニュートンの万有引力の公式です。これを地球上の物体に当てはめれば、
    万有引力定数 G=6.670×10-11 Nm2/kg2          
               地球の質量  M=5.972×1024kg          
               地球の半径  r=6,371km=6.371×106m          
    ここで、リンゴ(一つm=100g=0.1kg)を用意しましょう。
    この林檎に働く力はいわゆる重力です。重力は当然ニュートンの有名な万有引力の式(1)から求まります。リンゴが例え上空1kmにあっても地球の半径は大きいので、(1)式の中のrは変わらないとしていいですね。m1は地球の質量、m2はリンゴの質量です。従って、(1)より
    F=6.670×10-11×5.972×1024×m2/(6.371×106)2   =0.981×10(-11+24-12)× m2
     =9.81 m2
    9.81m/s2は、地球上での重力加速度。従ってm2=0.1kgだから
    F=9.81 m/s2×0.1kg=0.981N
    つまり、0.1kg重です。ここまでは、復習です。100gのものが0.1kg重になるのは当然ですね。
    でも、万有引力はすべてのものに対等に働くので、リンゴが2つあれば、このリンゴ同志も互いに引きあいますね。ふだん考えることはありませんが。もちろんこの答えも簡単に求まります。例えば2つのリンゴが10cm(0.1m)離れているとしましょう。(1)式を使えば、
    F=6.670×10-11×0.1×0.1/(0.1)2
     =6.67×10-11N=0.68×10-11kg重
    こんな小さな力は問題にならないことは当然です。
    リンゴ星
    では、次にこの2個のリンゴが宇宙空間に10cm 離れておかれていたらどうでしょう。宇宙空間では、万有引力だけが有効に働く力です。地球も太陽も塵やガスが集まってできたものと考えられています。このリンゴが等加速度運動で、5cm (相手方のリンゴも5cm動くから)の距離を動くと仮定して見よう。
    この時の加速度はF/m=a=6.67×10-10m/s2 )
    X=(1/2)× 6.67×10-10 t2=10 cmから、(X=(1/2)α t2)
    t=√ (2x/a)=√ (2×0.5/6.67×10-10)=0.387×105 s =0.387×105s÷60÷60÷24=0.44日
    v=at=6.67×10-10m/s2×0.387×105=2.58×10-5m/s
    取りあえず半日ほどで衝突するのですが、衝突速度はやけに遅いです。
    でも、万有引力は(1)式から距離の2乗に反比例して大きくなります。2つのリンゴが近づくにつれて働く力は急激に大きくなります。上の計算は明らかに過小な見積もりです。2つのリンゴが衝突する瞬間は何と力Fは無限に大きく(距離が零だから)なってしまします。取りあえずリンゴが合体するところまでは予測できます。しかし、無限大の力を受けたリンゴがどうなるのか、(1)式から得られる情報だけでは予測できません。
    地球も他の惑星も微惑星の衝突から生まれたとされています。その時の微惑星の衝突は、ここで述べたリンゴの衝突と変わらないですね。どのように衝突したのか知りたいですね。ニュートンの有名な万有引力なんてみんな知っていると思っていますがよく考えると分からないところも沢山あるようです。
    【追記】ここで、述べてきたNewtonの万有引力の式は、質点系に対するもの。リンゴはある程度の大きさがあるため、接触する時は中心まで一致するわけではなく、各部分部分に異なった引力が働いており、力が無限大になることはありません。また、パソコンのキーボードに接触する時、距離がゼロですが、引力が無限大になり指が離れなくなることなど絶対にないですね。指にもキーボードにも形を保とうとする分子的な反発力があるので心配ないわけです。でも、距離が極限としてゼロに近づいた時、どうなるのか考えてみるのも悪くないでしょう。

    物理の世界
    万有引力の話
    scienceの部屋

    万有引力の話(2)…連続体の場合

      万有引力の公式は次の通りであった。 F=GmM/r2 …(1)
    ここで、mは今まで通り質点としておき、Mを連続体の質量としよう。簡単な場合としてMが半径 a の中空の球殻の場合を考える。地球を考えても、実際にはマントルや核などと成層構造をしているけど、基本的に中心に全質量が集まった質点として取り扱っても良いようだ。実際に地上での力学では、重力は下向き地球の中心を向いているとして計算しても何の問題もない。中が伽藍洞(がらんどう)の球殻でも多分同じだろう。つまり、m が球殻の外側にあるときはこのことを確かめるだけだ。
    だけど、mが球殻の内側にある時は、そう簡単ではない。質点mは、半径aの球殻の中心を通り、垂直な位置に置かれています。球殻と質点mの距離はrとします。2つの場合に分けて考える必要があります。(ⅰ)質点mが球殻の外側にある時、(ⅱ)質点mが球殻の内部にある時の2つだ。球殻の表面積はS=4π a2、 μ [kg/m2]を単位表面積当たりの質量とすると、M=μS=4πa<>sup2μだから、μ=M/(4πa2)となる。

    球殻
    (ⅰ) 質点mが球殻の外側にある時
    球殻の中心から質点mまでの距離をRとして、球殻がmに及ぼす引力を算定する。まず、球殻をOPに垂直な厚さdxの薄い円環に輪切りにします。この中心からxの距離にある円環上の微小部分dsがmに及ぼす引力の大きさは、
    df(微小部分)=Gmμds/r2
    ところが、円環は軸OPに関して対称だから、OPに垂直な成分は互いに打消し合ってなくなる。だから、
    df(微小部分のPO方向の成分)=df(微小部分)×cosφ= df(微小部分)×(R-x)/r=Gmμds/r2×(R-x)/r
    =Gmμ(R-x) ds/r3
    円環全体の合計の引力は、
    df(円環全体の合計の引力)=2πy・df(微小部分のPO方向の成分) =Gm・2πyμ(R-x) ds/r3
    ここまで、準備すれば求める引力Fはdf(円環全体の合計の引力)を合計すれば良い。
    すなわち、球殻全体ではF=∫df(円環全体の合計の引力)となるわけだが、実はこの積分が大変そうだ。どの変数に着目するかだが、rを取れば、r=R+a~R-a、xに着目すればx=-a~a、他にθをパラメータとしてθ=0~πとする方法もありそうだ。そのようにして変数を一つにしないと積分はできない。
    まずは、rに着目。dx/ds=sinθ→ds=dx/ sinθ、y=a・sinθからsとyを消す。
    一方、r2=y2+(R-x)2=y2+R2-2Rx+x2=a2+R2-2Rx=a2-R2+2R(R-x)であるから、
    2r・dr/dx=-2R、 ∴dx=-r dr/R、R-x=(r2-a2+R2)/(2R)
    df(円環全体の合計の引力)=Gm・2πaμ・sinθ×(r2-a2+R2)/(2R)×dx/ (r3sinθ)
            =Gm・πaμ・(r2-a2+R2)/( R)×(-r dr/R)×1/ r3
            =-Gm・πaμ(r2-a2+R2) /(r2R2) ×dr
            =-(Gmπaμ/ R2){1-(a2-R2)/ r2}dr
    球殻の外(1)
        検討の結果、点Pが球殻の外側にあれば、どの、球殻からの引力も球殻の全質量が球殻の中心に集まったものと見做すことが出来、結局はその合計を取ればよいことが確かめられました。ところで、ここで結構間違いやすいのが積分の範囲。aからbに積分するのと、bからaに積分するのでは符号が反対になってしまいそうだ。ここでは基本はあくまでもdxを全部集めたとして、x軸上を-a~+aまでのdxについての値を積分すると良い。このようにすればdxは微小でも正の値を保っている。変数を変換してもこの符号の向きを忘れては積分の結果の符号が反対になったりして??となってしまう。

    (ⅱ)質点mが球殻の内部にある時
    球殻に中
    この場合、積分の範囲がa+R~a-Rに変わること。これを実行するとなんと球殻内部では引力が零となってしまいます。球殻の周りからの引力が互いに打消し合って、全体として引力が零になってしまうわけだ。
    球殻内は零
    すなわち、F=∑f=(Gm’/R2)∑m=(Gm’/R2)∫dm=Gm’M/R2
        巨大な球殻の宇宙ステーションの中は無重力状態なわけで、まあその点は理解して頂けそう。しかし、地球の深部は高温超高圧であることが知られています。宇宙ステーションの中にもう一つ少し小さな宇宙ステーションを建設していきこれを繰返して行っても中心は無重力が残るのでしょうか。地球の中に空洞があって別世界が存在しているということは昔のSFではありましたが。球殻がもし剛体でなければ、こうはならないのでしょうか。球殻の中に水を入れた場合はどうなるでしょうか。
    球殻内は無重力

    物理の世界
    scienceの部屋
    万有引力の話

    地球エレベータ

    次の、思考実験は地球の中心を通る竪穴を掘り、そこに物体を落とした時にどんな運動をするかという壮大なプロジェクト。球体は地球でなくてもいいので、将来人類が地球から宇宙へと脱出するような時代にはこんなプロジェクトもありかも。とりあえず、地球の平均密度をρ(kg/m3)、質量m(kg)の物体を地球の中心から半径r(m)の位置に置いてみる。先の検討から、物体に作用する引力は、半径rの内側の質量のみ。つまり、
    円筒トンネル
                   M'=(4/3)πr3ρ
    であるから、この物体に働く引力はいつも地球の中心Oを向いており、その大きさは、
                   f=GmM'/r2
    ところが、地球の総質量Mは、rをRとすれば良く、M=(4/3)πR3ρ 、M'=(r3/R3)M だから、
                   f=GmM/R3×r
    つまり、     f=kr、k=GmM/R3;   力が、常に中心からの距離に比例して、なおかつ中心に向かっているということで、これはバネの単振動(md2x/dt2=-kx)と同じだ。
    この単振動の周期は、T=2π√(m/k)となる。
    円筒トンネル
    この振動は非常に高速だ。わずか1.4時間程度で地球を一往復。平均時速9000km/時となる。ただ、この周期は、重力加速度の平方根に反比例するので月を対象にすれば2.5倍ぐらいに増えてしまうがまあ、実用的な値だろう。月ならば穴を掘ってもマグマは出てこないだろう。

    物理の世界
    万有引力の話
    scienceの部屋

    無限に広がった平面の場合

    次に考えるのは無限に伸びた平面(質量を持った)が、そこから距離a(m)のところにある点Pにある小物体(質量mの質点)に及ぼす万有引力を求めようというものです。全く空想上の仮定みたいだけど、半径約6400km地球の上空10km(高度1万m)に何か物体が浮かんでいる情景は、ほぼこんなものでしょう。なお平面の質量面密度をμ(kg/m2)と仮定します。
    無限平面 無限平面
    点Pから垂線を下ろしてその足をOとしましょう。Oを中心の平面上の同心円がたくさんあると考えます。その中から微小な幅dxのリングを選んで、微小中心角に対応する長さをdsとして、平面の微小要素と質点mの間の引力は、
                   df'=Gmμdxds/r2
    この力はx方向(リングの径方向)の力は、互いに打消し合ってしまうので、OP方向の成分だけ考慮すれば良い。
                   df'=Gmμdxds/r2・(a/r)
    だから、リング全体としては、df=Σdf'OP=Gmμdx/r2・2πx(a/r)=Gmμadx/r3・2πx
    ここで、r2=x2+a2、だから2rdr/dx=2x →dx/r=dr/xとなるから、
                   df=Gmμ2πadr/r2
    平面全体が質点mに及ぼす引力は、dfをすべてのリングのついて積分すればよいので、dxについて0~∞まで積分する。変数xをrに変換したので、drにつてa~∞まで積分すれば良い。
                   f=∫adf=Gmμ2πa∫adr/r2=Gmμ2πa[-1/r]a=Gmμ2πa×(1/a)=2πGmμ(一定)…(1)
    つまり、この平面の上にある物体には高さにかかわらず、同一の引力が働くことが分かります。高さが2倍になれば、同じ立体角での平面上の面積は4倍(対応する質量も4倍)になりますが、距離が2倍になるのでそれによる引力は1/4になり、結局高さに依存しないことが分かります。
    ここで、チョット不思議な気がするのは平面上の質量分布は無限に広がっているので、その質量の合計も無限に大きくなるような気がするのですが、その値は有限で収まっています。結局xが大きくなる遠くの方の微小平面の引力は、鉛直方向の成分が小さくなるので効果が小さくなってしまうのです。だから、実際には平面は無限でなくてもある程度大きなものなら無限だとみなしても差し支えないということです。平面を地球の表面に見立てると、地上に存在する質量mに対する引力はmgです。つまり、地球上の物体にはすべて重力加速度gが作用することを証明したことになるんです。
    地球の質量をM、地球の半径をRとすると、g=GM/R2…(2)、また、(1)式の力が地上での重力ですから、
                   mg=2πGmμ、これと(2)式の関係から、μ=M/(2πR2)
    つまり、最初に仮定した面密度はμ(kg/m2は、地球の質量の半分を地球の投影面積で割ったものだと分かります。

    物理の世界
    万有引力の話
    scienceの部屋

    平板コンデンサー内部の電界と容量

    静電気力も万有引力と同じく、距離の逆2乗に礼する力だ。すなわち、
              万有引力; f=Gmm'/r2
                クーロン力;f=kqq'/r2
    無限平面 G→k、m→q、m'→q'とすれば全く同じ式であることが分かる。ただし、質量にはマイナスの値は無いが、電荷は正負の両方の値を取る点だけが異なっている。だから、無限に広がった平面での万有引力に議論がこのまま適用できることになる。
    ここに、比例定数kは、真空中では、9×109[Nm2/C2]の値。平板平面コンデンサーの電荷密度をσ[C/m2]としよう。上板は+、下板は-に帯電している。コンデンサー内部にある+1Cの単位正電荷に対しては、上板からは2πkσの斥力(同符号)、下板からは2πkσの引力(反対符号)のが働き、結局内部の力は4πkσの下向きの力が働くことになる。この力を電界と称する。この単位正電荷に働く力は無限に広がった平面での万有引力の場合と同じで平板に位置によらず一定というところが大事だ。だから、コンデンサーの外側では、単位正電荷に働く2つの板からの力は打消し合って、コンデンサーの外側の電界は零となる。
    実際には、平板は無限の広さを持つわけではないが、極板間の距離に比べて平板が十分に広い場合はこの関係が成り立つと考えられる。
    ところで、電位差というのは、力が働いている電界内で、単位電荷を動かすのに必要な仕事のことを言う。だから、極板間の電位差は、極板間の距離をd[m]として,           V=Ed=4πkσd[V]
    電位差の単位はV(ボルト)で表わす。
    次に、コンデンサーの極板の面積をS[m2]、蓄えられている電気量をQ[C]とすると、Q=Sσ、一方電気容量をC、Q=CVとすると、
               C=Q/V=Sσ/4πkσd=(1/4πk)(S/d)となる。これがコンデンサーの容量を表す式だが、この単位をF(ファラッド)と呼ぶ。
    電気の場合は、単位が結構分かりにくい。電荷の電気量の単位をC(クーロン)出表すので、クーロン力のfは勿論N(ニュートン)ですが、
    係数のkは、[k]=[Nm2/C2]、[E]=[4πkσ]=[N/C]、[V]=[Ed]=[Nm/C]、さらに、
    [C]=[Q/V]=[(1/4πk)(S/d)]=[C2/Nm]=[F]、コンデンサーの容量はF(ファラッド)で表す。

    物理の世界
    万有引力の話
    scienceの部屋

    運動エネルギーとポテンシャルエネルギー

    ニュートン以降の力学の発展の中で、運動の大きさを表す尺度として「運動量mv」と「運動エネルギー(1/2)mv2」のどちらが適切か論争が当時の学者たちの中で闘わされたという。現在ではどちらも運動を表す大切な尺度として定着しているが、性質はずいぶん異なるのでしっかりと使い分けできるようになりたい。
    【運動方程式の積分】
    質量mの物体が力Fを受けて運動した時、その運動方程式は、
              md2x/dt2=F…(1)となるのが有名な運動方程式。この両辺にdx/dtをかけて、tについて積分する(t=t0~t)。
              m∫t0t(dx/dt)(d2x/dt2dt=∫t0tF(dx/dt)dt
    ところが、d/dt(dx/dt)2=2(dx/dt)(d2/dt2であるから、左辺の積分は、次のようになる。
              (m/2)∫t0td/dt(dx/dt)2dt=[(m/2)(dx/dt)2]t0t
    ここでdx/dt=v(速度)とすると、上式は、           mv2/2-mv02/2
    右辺については、∫F(dx/dt)dt=∫Fdxとなる。結局上の積分からは次の方程式を得ることができる。
              (mv2/2)-(mv02)/2=∫x0xFdx
    ここで、mv2/2は運動エネルギーと呼ばれる量で、運動エネルギーの変化が仕事に変換されることを示している。

    物理の世界
    万有引力の話
    scienceの部屋

    気体の圧力を統計力学的に求める

    理想気体 気体を剛体の球(気体の分子)が自由に飛び回っている状態と考えます。一辺の長さがL、体積がV=L3=L×L×Lの硬い箱の中に、質量mの気体分子がN個含まれていて、ランダムに飛び回っている状況を考えます。これを理想気体とします。重力の影響はここでは無視。気体の分子同士、および気体分子と剛体壁は弾性衝突(反発率 e =1)するとします。つまり、衝突の前後でエネルギーが失われることが無い状態です。かなり無理な仮定のように見えますが、簡単なモデルということで案外うまく行くかも。
     さて、図のように箱の辺に沿って座標軸x、y、zを取ります。x軸に垂直な壁S(右側としましょう)が受取る圧力を求めます。y、z軸で考えても同じですね。気体分子は各々勝手な速度で飛び回っていますが、そのうちの1つを取って、その速度をv、成分をvx、vy、vzとします。分子が壁Sと衝突すると、
    速度はvxから-vxに変化。運動量はmvxから-m vxに変化します。分子は壁からこれに相当する力積をうけ(x軸の負の方向)、壁はその反作用として反対向き(x軸の正の方向)の力積を受けます。壁が受ける力積は、 m vx-(-m vx)=f △t (運動量の変化 = 力積)から、
             f △t=2 m vx  …(1)
    △ tは、本来は力の作用時間ですが、反発率1の剛体では△tは0、力は無限大。でも、実際にはfと△tの積は有限です。完全剛体自体が一つの理想化したモデルですから、実際の衝突の問題では力積を使わないといけないのです。
    △tは分子が衝突してから次に衝突するまでの時間を考えて、その間は一定の力がかかっていると考えるます。分子の数がうんと多ければそのように考えてもいいですね。分子が壁に衝突して反射して反対の壁にぶつかりまた反射して壁Sに到達するには距離 2 L 進みます。その間の時間は、       △ t=2 L/ vx となります。これを(1)に入れると、
    f=m vx2 / L …(2) の力を受けることが分かります。 一方、v2=vx2+vy2+vz2
    平均を取る操作を{ }で表します。すなわち{v2}=(1/N)∑ v2、 Nは総ての分子の数。∑の和 i=1~Nは、自明なので省略。
    vx、vy、vzは、個々の分子では色々な大きさがあるが、平均値をとると空間の等方性から同じになります。
    つまり、{vx2}={vy2}={vz2}= (1/3) {v2}
    N個の分子から壁 S が受ける力Fは f の総和を取り、 F=∑ (mvx2/L)= m {vx2} N / L= N m{v2}/ (3L)
    これより、壁 S が受ける圧力 p は
       p = F /L2 = N m {v2} / (3 L3)= N m {v2} / (3 V)  …(2)
    これで、気体分子運動の平均的な速さが分かれば、箱の中の壁に作用する圧力が求められます。
    箱の中の気体は方向に関係なく均一な p という圧力が存在しています。ここで、N をNA (アボガドロ数) とすると、気体の状態方程式から、
       p V= R T=NA m {v2} / ( 3V) ×V=NA m / 3
        m {v2} = 3 R T / NA
       (1/2) m {v2}= (3/2) (R / NA)T= (3/2) k T

    左辺は、分子1個当たりの平均運動エネルギーです。理想気体では平均運動エネルギーは温度だけで決まります。

       k=R/ NAは、ボルツマン定数と言われるもので k=1.38×10―23J / Kです。
    気体全体でのこのエネルギーの総和はは、内部エネルギーと呼ばれます。
       U = NA ((1/2) m {v2} )=(3 / 2) R T 
    さらに、1モル当たりの比熱は、温度を1度上げるのに必要な熱だから、
       Cv=(3/2) R (T+1)-(3/2) R T=(3/2) Rとなる(定積モル比熱)。
    【追記】2017.8.28
     気体の圧力は、このように統計的手法でうまく説明できます。しかし、ボルツマンがこれを発表した当時は、全く無視されてします。当時は分子という概念は実体として解明されておらず、圧力は流体力学的な連続体モデルで説明されていました。例えば水を考えると、パスカルの法則に見られるように、圧力は瞬時に伝わる連続体で、ポツポツの粒子が自由に動き回る世界は想像外だったのでしょう。確かに水圧に関してはこのモデルで説明することは難しそうです。

    物理の世界
    scienceの部屋

    静水圧とは

     アリストテレスは、力が物体に作用すると物体は動き(運動し)、力が働かなければものは動かないと考えていた。コップに水を入れておいておけば、水は力が働いていないので動かない。しかし、コップは水が入ったため明らかに重くなっており、それが置いてある机により多くの圧力を与えるだろう。あなたが机を下向きに押せば、力が必要ですが机は動きません。また、あなたがいかに力持ちでもあなたの体重よりも大きな力で下向きに押すことは不可能です。ここで、作用反作用の法則を思い出してください。机が動かないということは、机から上向きの力が働いているのでしたね。動かないということは、力が働いていないのではなく、働いている力が釣り合っているためと分かることは大きな進歩です。
     では、圧力とは何でしょう。簡単に言えば単位面積当たりの力です。あなたが面積Sの板の上に乗り、あなたの体重がM(kg)とすると、その時の圧力P(N/m2)は、
    P=Mg/S 【N/m2】、
    gは重力加速度で地上では、9.8m/s2、体重は正確には質量と言わねばなりません。ところがあなたが乗った板には本当に均等な圧力がかかっていたとは言えません。上のPは、平均の圧力です。実際には板の端と真ん中ではちがう圧力でしょう。
    静水圧の説明  話がそれますが、土木や建築の分野では、出来上がったコンクリートの強度を確認するために、現物と同じ条件で試験練(ねり)で拵(こしら)えた円柱の供試体を何本も造り、これを機械的に潰してどこまで耐えられるか試験します。この試験体をつくる円柱の大きさ等の仕様はキチンと決まっていて、これ以外は認められません。供試体の大きさが変わると強度が異なってしまいます。所要のコンクリート強度を確保するためには結構色々な条件を考慮する必要があるのです。強度というのはコンクリートの内部に発生する圧力に対する耐久力です。コンクリートの年齢(打設してからの時間経過)、配合(水、砂、砂利、セメントの量と割合)、温度等色々考慮する必要がありますが、円柱の大きさが決まっている最大の理由は、コンクリートの場合、内部の圧力の分布は均一にはならないためです。供試体が大きい方が耐久力があるようです。
    この点、水(流体)を対象にすると圧力はずっと簡単になります。水圧は、流体の中に仮想の面を考えると面がどちらに向いていても面に垂直な成分しかありません。上で述べたコンクリートのように面の向きで圧力の値が異なったり、面に平行な成分が発生するものを応力と称しています。詳しくは、材料力学等の分野を学ぶ必要があります。
    鉛直筒体 【水中の一点に作用する水圧は、その方向にかかわらず強さが等しい】
    図1に示すように、一辺が鉛直な三角形の単位長さの仮想三角柱が水中にあるとします。この三角柱に作用する力は下向きの重力だけです。
    結局水中の圧力は、深さが一定ならどの方向でも一定になります。材料が固体(剛体ではない)ではこうならず、応力テンソルという物理量が必要になります。
    次に、水中で仮想の鉛直筒体を考え、切り口を単位面積とすると、w0は水の単位体積重量(ρg)だから、
           p2=p1+w0H、ここでw0は水の単位体積重量(ρg)だから、
           p2-p1=w0H
    また、右図では、p=p3-p0=w0H、p0は大気圧。大気圧を零(基準)と考えて、p/w0=Hを水頭(head)と言います。
    油圧機械の原理 結局静水圧とは深さだけの問題ですね。次に示すのはパスカルの原理とも言われているもので、「密閉容器中の流体は、その容器の形に関係なく、ある一点に受けた圧力(単位面積当たりの力)をそのままの強さで、流体の他のすべての部分に伝える。」 というもの。建設機械等に使われる油圧の原理もこれですね。
    油圧ポンプの原理です。左側のピストンをF1の力で押すと、水圧はp1=F1/A1となります。右側のピストンは断面積をA2とします。例えばA2/A1=100とします。p1はパスカルの原理で右側に伝わり、右側のピストン内の圧力はp1です。だから、右側のピストンに作用する圧力は、F2=p1A2=(F1/A1)A2=F1(A2/A1)=100F1となります。力が100倍に拡大されます。もちろん左側のピストンは100倍の距離を動かさなければいけませんが。建設機械は大きな力を出しますが、決して電源コードを引きずっていませんね。油圧を使うと大きな力を発揮することが出きる訳です。

    物理の世界
    scienceの部屋

    気体の状態方程式

    気体というものは、身の回りにありながらその存在が本当に分かりにくい。そもそも見ることが出来ない。液体なら、暖めても体積は変わらない(本当は変わるのだけどたいてい無視できる)のに、気体の体積は簡単には測れない。熱機関等の発達で水蒸気等を取り扱い始めてようやくその物理的な性質を記述できるようになります。
    最初に出て来るのがボイルの法則(1662年)、続いてシャルルの法則(1787年)が発見されて気体の性質が調べられるようになります。これらは1つにまとめてボイル・シャルルの法則と呼ばれます。かなりの昔のことだ。
    気体の状態は、結局f (p,V,T)=0という形で表せます。つまり、圧力p、体積V、温度Tの3つの状態量のうち2つを決めると後の一つは自動的に決まってしまう。でもどれか一つだけ動かすことは難しい。
    ボイル・シャルルの法則は次の(1)式の簡単な形で表わされます。この式が成り立つような気体を理想気体と言います。気体の性質をうまくモデル化したわけです。
          ボイル・シャル法則: pV=nRT…(1)
    nは気体のモル数です。圧力pはPa(パスカル)=N/m2、体積Vはm3、温度Tは絶対温度Kとすると、R=8.3 J/mol-K、これを気体定数と言います。絶対温度は摂氏℃の温度に273.15を足したもので、絶対温度を使うと(1)式のように圧力、体積と温度が比例関係で表せます。つまり、体積∝温度、圧力∝温度、体積∝1/圧力の便利な関係が得られます。ただし、変数が3つなのでどれか一つを固定して考えないと難しい。だから偏微分が沢山出て来る。慣れれば普通の常微分と同じですが。
    それと、(1)から分かるように、温度は上限が無いですが下限は存在します。T=0Kになると、体積か圧力のいずれかが0になってしまいます。実際には空気は液化してしまいます。

    ボイル・シャルルの法則が成り立つ気体を理想気体といいます。常温で普通の気体を扱っている時は、理想気体はかなり良い近似(ボイル・シャルルの時代はこれで充分だったのでしょう)とされていますが、実在の気体を取り扱うためボイルシャルルの法則とはかなり異なった形の状態方程式        f ( p, V, T )=0も提案されています。

    理想気体の内部エネルギーについては箱の中を自由に飛び回る、N 個の剛体粒子モデルで既に求めました。統計力学的な手法です。でも、このような離散化したモデルは当時の学会ではなかなか受け入れてはもらえなかったようです。空気も水と同じで連続体として考えたいですから。そもそも分子や原子の存在等当時知られていたはずもなかったですから。理想気体の内部エネルギーを連続体のモデルで導くにはどうすれば良いのでしょうか。
    気体の圧力を統計力学的に求める
    その結果(統計力学的の求めた結果)、空気分子の力学的運動エネルギーの総和 E( 1 モルの場合)が
           E=∑(1/2) mv(i)2 = (3/2) R T…(3)
    となることが分かります。理想気体では飛び回る空気分子の運動エネルギーの総和を内部エネルギーと定義するのです。また、これが温度の正体ともいえるのですね。また、 p V= R T の関係があるので
           E= (3/2) p V、すなわち 
           p V =(2/3) E
     これをベルヌーイの関係と称している。
    一方、実在の気体を取り扱うための状態方程式として良く使われるものに、ファン・デル・ワールス(van der Waals)のものが良く使われている。
          ( p+a/V2 ) (V-b) = R T
    ここで、 a、 bは気体毎に異なる物質定数です。

    【気体の圧縮率・膨張率】
    気体の圧縮率・膨張率 気体は温度や圧力の変化で体積を大きく変えるのが特徴です。その基本的な性質、気体の膨張率と圧縮率を求めましょう。
    右記の通りです。
    温度を上げると気体は膨張します。この時は圧力を一定にしておきます。これが(定圧)膨張率。また、気体を圧縮していくと縮みます。この時は温度を一定にしておきます。これが(等温)圧縮率です。圧縮率の方は圧力が増えると体積は減るのでマイナスの符号を付けます。
    p、V、Tの三つの変数は互いに関連し合うので、どれか一つを一定にしておかないとややこしいですね。なお、理想気体については、膨張率はβ=1/T(定圧)、圧縮率はκ=1/p となります。

    何故ならば、理想気体では常に p V = R T の関係があります。従って、
           β=(1 / V)(∂V/∂T)p =(1 / V)∂/∂T (RT/p)p =(p / R T)∂/∂T (R / p)p= 1 / T
           κ=(-1 / V)(∂V/∂p)T =-(p / R T)∂/∂p ( R T / p)=-(p / R T)(-R T / p2) = 1 /p
           (∂p/∂T)V=∂/∂T( R T / V)V= R / V = R p / R T= p /T = β/κ
    と右の関係は簡単に求まります。
    【偏微分の公式】
    なお、F( x, y, z )=0 の時に、(∂z/∂x)y(∂x/∂y)z(∂y/∂z)x=-1 という関係が知られています。
    気体の体積をV=V( T, p )とすると、
           dV=(∂V/∂T)p dT+(∂V/∂p)T dp
          dV/V=(1/V) (∂V/∂T)p dT+(1/V) (∂V/∂p)T dp=βdT-κdp …(4)
    となります。
    第一項が温度上昇による体積の増加率、第二項が温度が一定の場合の圧力増加に伴う体積の収縮率です。つまり気体の体積が変化する原因には温度が上がる/下がる(膨張/圧縮)か圧力が増加/減少する(圧縮/膨張)かの2つの要因があります。

    理想気体の場合は、 β=1/T、κ=1/p だから、(4)は、
          dV/V=dT/T-dp/p、すなわち ∫dV/V=∫dT/T-∫dp/p
    積分範囲を(V1, p1, T1)→(V2, p2, T2)とすると、
           log(V2/V1)=log(T2/T1) -log(p2/p1)
           ∴log( V2/V1・ p2/p1・ T1/T2 )=log(R T2/R T1・T1/T2)=log 1=0
    ここでは、pV=RTの関係を使っている。
    これは一体どういう意味なんでしょう??



    【対数計算のコメント】
    ところで、対数関数の積や商は、高校の数学では和や差で表されると習ったはず。
    log ab=log a+log b、log a/b= log a-log b
    しかし、logの中は当然無次元です。logの中が、温度や体積、圧力になるのは大変可笑しい。。指数関数や三角関数でもそうですが、上の場合は特にうっかりしやすいと思います。ただ、熱力学の教科書では、log(p)やlog(V)が平気で出て来ます。たいていは、和とか差を取ると無次元のなるので問題はないのですが気になる所です。
    ある数を〇乗したら、M(任意の数)になるとします。この時、
    ax=Mですが、これをx=logaMと表します。aは対数の底と言います。
    例えば、常用対数は底が10で、2=10x、x=log102=0.301だから、2=100.301
    2100=(100.301)100=1030.1=1030×100.1=1.259×1030 (100.1=1.259)
        大きな数を扱う時には対数は大変便利です。ところで、自然科学の分野で対数を利用する時は、ほとんど底はe(=2,718---)を用います。
    ex=y の逆関数がx=log yです。ここで注意してほしいのは、xは普通の数ですね。つまり無次元数。ex-kg、 ex-m 、ex-Pa 等ということ絶対ありえないですね。ということはyも無次元でないとおかしいですね。
    y=AexとすればyはAと同じ次元です。Aに単位が入っていても問題ないね。
    両辺の対数を取れば,
    log y=log A+x、x=log y-log A=log(y/A)
    この時、上の式のlog y、log Aは、本当はおかしいでしょう。log(3kg)なんてある訳ないから。最終結果はOKでしょうが。積分の時もあります。
    ∫dx/x=log|x|+C、xが圧力とか単位を持っていたら、左辺は無次元ですが、右辺のlogの中には単位が入って来てしまいますね。積分定数がついているのでうまく調整は聞くのですが、なんとなく感じが良くないですね。

    気体の比熱 【気体の比熱】
    次に気体の大事な性質は比熱でしょう。温度を1K上昇させるのに必要な熱量(エネルギー)です。比熱が大きいということは温まりにくく冷えにくいということ。比熱の大きなものの代表は水です。空気の場合は、熱すると膨張しようとします。水は熱してもほんの少ししか膨張しません。だから、空気の比熱は定積比熱と定圧比熱の2つを考えないといけません。密閉容器の中で熱した場合と大気圧状態で熱した場合です。これが定積比熱と定圧比熱です。当然定積比熱の方が小さいはずです。定圧の場合、膨張するという仕事にエネルギーが使われてしまいますから。
    比熱は温度の関数です。つまり、d'Q = C(T) dT
    気体に熱を加えると、一部は膨張という仕事に使われ、別の部分は内部エネルギーの増加に使われます。すなわち、d'Q = dE+ p dV…(1)となります。
    定積の場合は dV=0 ですから、d'Q=dE=CvdT となります。すなわち、Cv=dE/dT としたいところ、これでは体積が一定ということが分かりません。だから Cv =(∂E/∂T )V と表わします。熱力学でやたらと偏微分が出て来るのはこのような訳があります。

    次に、定圧の場合は、 dE =(∂E/∂T)V dT+(∂E/∂V)T dV
    (1)式から、d'Q=Cp dT= dE+p dV=(∂E/∂T)V dT+(∂E/∂V)T dV+p dV=(∂E/∂T)VdT+{(∂E/∂V)T+p}dV
    ところで、dV=(∂V/∂T)p dT+(∂V/∂p)Tdp=(∂V/∂T)p dT    (∵dp=0;定圧)とできるので、
    CpdT=dE+pdV=(∂E/∂T)VdT+{(∂E/∂V)T+p}(∂V/∂T)pdT
    Cp=(∂E/∂T)V+{(∂E/∂V)T+p}(∂V/∂T)p
    ∴Cp=CV+p(∂V/∂T)p …(4)
    (4)では、CV=(∂E/∂T)V、(∂E/∂V)T=0 (内部エネルギーは温度だけの関数)の関係を利用しました。
    PV=RTの関係から、p(∂V/∂T)p=p∂/∂T(RT/p)p=R だから、
       Cp=CV+R
    これはMayerの関係式と言われ、定圧比熱と定積比熱の差は気体定数の差となります。
    自由に分子が飛び回る理想気体の内部エネルギーは次のようになることが知られています。
    理想気体の自由度 気体分子には自由度があって、内部エネルギーはその各々の自由度に均等に配分されるという法則があります。例えばヘリウムのような単原子分子の自由度は x, y, z で自由度 3 ですが、固体や3(以上)原子ではそれに x, y, z 軸回りの回転が加わり自由度は 6 になります。その結果、内部エネルギーと定積比熱は自由度の応じて表のように。閉じ込められた気体に加えられた熱は、総て内部エネルギーの増加になります。対応する定圧比熱はMayerの関係式から求めることが出来ます。
    先に示した、E=(3/2) R T は単原子分子の場合、この時はCv =(∂E/∂T )V=(3/2) R となりますが、H2、O2は2原子分子なので、Cv =(5/2) R 、CP=Cv+ R = (7/2) R となります。

    物理の世界
    scienceの部屋

    熱力学とエントロピー

    目次   
    エントロピーとは何だろう=エントロピー増大の法則 エントロピーを計算して見る 等温変化と断熱変化
    カルノーサイクル 情報工学とエントロピー

    エントロピーとは何だろう=エントロピー増大の法則

    エントロピーという言葉は、最近良く使われるようになって来ています。本来は、物理学の中の熱力学という分野で使われ始めたのですが、それが統計力学の確率的な見方を通して、分子運動の乱雑さを表す指標と同じものであることが分かります。それが情報の不確実さを表す指標と同じものであることが、明らかになり情報工学分野でも盛んに使われるようになってきました。また、環境問題でも環境の質を評価する一つの指標としても使われるようになってきています。
        エントロピーは、エネルギーと並んで自然を理解する上で非常に重要な概念です。ただ、力や加速度、距離や時間と異なり直感的に理解するのが難しいので基礎的な考えを学んでおくことが必要なようです。まず、熱という量は結構分かりにくい所があります。病気になって熱がある。熱はある訳はない。体温計で計るのは体温つまり温度です。熱とはエネルギーの流れで、直接は計ることが出来ない量なのです。このような量としては、力学で使う仕事という概念も同じです。仕事も力×動いた距離、W=Fdで力の流れみたいなもの。そういえば、熱力学でd’Qとかd’Wとかあって、これは全微分ではないですよ。普通の微分ではない単なる微小量ですとよと教わった記憶があります。さらに、熱も仕事もエネルギーの単位J(ジュール)で計測されます。つまり、熱と仕事を組込んでエネルギーの保存則が成り立っている訳です。熱はエネルギーの一形態であり、熱を利用して色々な機械を動かして仕事をすることができます。しかし、熱エネルギーはどんなに頑張ってもすべてを仕事に変えることは出来ません。
       このことを最初に研究したのが、カルノーサイクルで有名なサディ・カルノー(1796~1832)です。熱機関というものは、結局高温の熱源THからエネルギーを受取り仕事をして低温熱源Tに熱を与えてもとに戻るサイクルを繰返して動きます。最も効率の良い理想的なサイクルを考えてもその効率は限度があります。熱エネルギーは大抵の場合、半分以上は捨てざるを得ない宿命があります。蒸気機関車はせいぜい10~15%程度の効率、火力発電でも40%を越えれば上出来です。それでは、どうして火力発電を止めて水力に変えないのか。水力発電ならエネルギー効率は90%以上も可能なのに。ところが化石燃料には古代の生物達が貯金してきた膨大なエネルギーがコンパクトに蓄えられています。水力を使うには大規模な土木工事が必要で環境への影響も小さくありません。経済効率からは圧倒的に化石燃料は有利です。ただし、近年は地球温暖化と資源の枯渇の問題から化石燃料を多量に消費することは問題がありますが、エントロピーとは直接関係ななさそうです。
       熱とは結局、高温から低温に流れるもので、その逆はありません。そして、この時必ず増えていくのがエントロピーという物理量です。このような変化を不可逆変化と言います。コップに落としたインクがコップ全体に広がってしまって元に戻らないのが不可逆変化。情報の世界では噂が広がって尾ひれがいっぱいついて元の情報が分からなくなってしまうのも不可逆変化。情報の不確かさを表すのもエントロピーと言う指標を使います。
     森羅万象色々な人や自然の活動の結果、最後に残るのは低温の熱源だけ、エントロピーはどんどん増大していきます。世界(宇宙)は、最後には一様な低熱源のみの死の世界。これを「熱的死」というのだそうです。運動量やエネルギーの保存則と比べてあまり明るい感じの法則ではないでしょう。色々なシステム(環境や社会的システムも含む)にとっては、自己のシステム内のエントロピーを以下にいかに増やさないようにできるか大変重要な問題となって来ているのです。

    熱力学とエントロピー
    物理の世界

    エントロピーを計算して見る

    熱力学でのエントロピーの定義は極めて単純です。       dS=d’Q/T……(1)
    エントロピーの単位は、エネルギー(熱)を絶対温度で割ったもの、つまり、同じエネルギーでもその時の温度によって価値が違うぞと言っているんです。移動した熱量をその時の絶対温度で割るだけです。
    d’Qとダッシュがついているのは、熱量の移動は全微分にならないからですが、Tで割った結果のdSは全微分になるのはチョット不思議な気もしますが。全微分にならないと熱の移動の仕方でその都度その量が変わるので微分積分など操作に耐えられないという問題があるんです。
           △S=△Q/T……(2)
    と書いてある教科書もあるかもしれないが、系の温度が変化する場合は、(1)の表示は不正確だし、(2)では足し合わせて積分するにも不便です。
    ただし、系の温度が変化しない場合には、(2)を使うことが可能で、そのような特例として(水の)融解と蒸発の例があります。

    なお、以下の問題では、熱量の単位 cal を SI 単位に直す必要があります。仕事やエネルギーの単位はJ(ジュール)です。換算係数は 4.1855 J/cal です。
    【問題1】1気圧のもとで、0℃、1gの氷がとける時のエントロピーの増加量
    水の融解の潜熱は80cal/gでした。0℃=273K     △S=△Q/T=80/273=0.29[cal/K・g]=1.23[J/K・g]
     氷が融解して水になるとエントロピーが増加します。

    【問題2】1気圧のもとで、100℃、1gの水が蒸発する時のエントロピーの増加量
    水の蒸発の潜熱は540cal/gでした。100℃=373K     △S=△Q/T=540/373=1.45[cal/K・g]=6.06[J/K・g]
     水が蒸発して水蒸気になるとエントロピーが増加します。

    【問題3】理想気体の場合…1モルの理想気体を考えて、その温度や圧力が変化した時のエントロピーの増減を考えてみます。
     1モルの理想気体(これを系とする)を考えます。理想気体では、状態方程式  pV=RTが成立します。その時、
    ①体積が一定で、温度がT1からT2に増える時の系のエントロピーの変化
    ②温度が一定で、体積が体積がV1からV2に増える時の系のエントロピーの変化
    ③体積が一定で、圧力がp1からp2に増える時の系のエントロピーの変化
    ④体積が一定で、圧力がp1からp2に増える時の系のエントロピーの変化
    となる場合の変化を求めてみます。まず、熱力学の第一法則を最初に考えないといけません。
          d’Q=dU+pdV……(3)
    この式の意味は、熱が与えられれば、それは内部エネルギーの増加(温度が上がる)に使われるか、或いは圧力が増えて体積の増加に使われるか、その両方かのどれかで、エネルギーの保存則を示しているのです。
    ①では体積が一定で、温度がT1からT2に増える時の系のエントロピーの変化です。体積一定ですから、(3)式のpdV=0です。理想気体では内部エネルギーUは温度のみの関数ですから、d’Q=dU=CvdT(モル比熱に温度上昇を掛けたもの。これが定積比熱の定義。)
           ∴dS=d’Q/T=(Cv/T)dT、            ∴△S=Cv∫T1T2(dT/T)=Cvlog(T2/T1) (体積が一定)……(4)
    (T2>T1)だから、温度が上がればエントロピーは増大します。

    ②では温度が一定で、体積がV1からV2に増える時の系のエントロピーの変化です。温度のみに依存する内部エネルギーの変化は0、すなわちdU=0です。
    従って、dS=d’Q/T=(p/T)dV、    ∴△S=∫V1V2(p/T)dV=∫V1V2(R/V)dV=Rlog(V2/V1)(温度が一定)……(5)
    V2>V1だから、体積が増えてエントロピーは増大します。

    ③では、体積が一定で圧力がp1からp2増加する場合だ。
     p V= R T の関係を用いると、体積が一定で、圧力がp1からp2に増えるということは温度がT1からT2に増えることと同じだ。この時の系のエントロピーの変化は(4)から、
       △S=Cv log(T2/T1) =Cvlog (p2/p1)
    この場合も熱が与えれれ圧力が増加してばエントロピーは増えるんですね。

    ④最後に温度が一定で、圧力がp1からp2に増える時の系のエントロピーの変化は、体積が V1から V2に減少することと同じだ。
        △S=Rlog(V2/V1) =Rlog(p1/p2)
    この場合は、圧力が増えると、体積は減少するのでエントロピーは減少する。

    【多項式の積分】
    なお、積分計算では、一般の多項式では
        ∫xndx=(1/(n+1))x(n+1)+C
        ∫x -mdx=(1/(-m+1))x(-m+1)+C
    が、一般に成り立つのですが、n=-1( m=1)の時に限って、
       ∫ x-1 dx=∫ dx / x=log|x|+C

    となる。熱力学でやたらとlogが出て来るのはpとVが反比例の関係があるため。

    熱力学とエントロピー
    物理の世界
    scienceの部屋

    情報工学とエントロピー

    情報は確実性が命、エントロピーは少ないほど良い。情報は多い方が良いという思い込みはここでは捨てなければならない。エントロピーは不確実性の尺度です。
    まず、簡単な例をあげてエントロピーSを求める。
    〇カードが沢山あっても同じもので選択の余地がない場合。S=0
    〇2種類のカードが同数ある。二者択一の場合。S=1
    〇4枚の異なったカードから1枚をあてる。S=2
    〇8枚の異なったカードから1枚をあてる。S=3
    〇16枚の異なったカードから1枚をあてる。S=4
    エントロピーは、S=log2Nとなりそうだ。
    これを、もっと一般の場合に適用できるようにしたのが、
    S=-∑i(Pi) log2 Pi …(1)
    もう少し、例題をやって見ましょう。 〇3枚の異なったカードから1枚の正解を見つける。
    S=-3×(1/3) log2 (1/3)=log2 3=log10 3/ log10 2=1.585
    〇将棋の金4枚をふる。場合の数は全部で16通り(24)ある。
    表を1、裏を0として、その合計を求める。
    0…0000→1通り、1…0001、0010、0100、0100→4通り、
    2…0011、0101、0110、1001、1010、1100→6通り(4C2=6),
    3…0111、1011、1101、1100→4通り(4C3=4)、4…1111→1通り
    全部で1+4+6+4+1=16通り、従ってエントロピーSは、
    S=-{2×(1/16)×log2(1/16)+2×(4/16)×log2(4/16)+1×(6/16)×log2 (6/16)) }
          =2.031
    情報工学の場合は、Sを情報のビット数と考えることもできる。一般の統計力学の場合、対数の底は2ではなく。eを用い、場合の数はものすごく多い(例えばアボガドロ数6×1023個)ところが異なっている。

    熱力学とエントロピー
    物理の世界
    scienceの部屋

    等温変化と断熱変化

    エントロピーの熱力学的な説明を解明するために、まず始めに有名なカルノーサイクルの説明を行ってみたい。まず、その準備として気体の体積変化にかかわる、等温変化と断熱変化について考察する。体積変化には圧縮と膨張がある。外から仕事をもらうのが圧縮、外へ仕事をするのが膨張である。熱も仕事もエネルギーそのものではなく、系(シリンダー)に出入りする量でエネルギーと同じ単位(J)で表される。カルノーサイクルは等温変化と断熱変化を組合わせて造った単純化された仮想的なサイクルで熱機関の本質を見事に解明することに成功している。
    【等温変化】
    シリンダーを熱源(高温と低温の2種)に接触させて、温度が一定の条件での圧縮及び膨張を行う。「気体の圧力を統計力学的に求める」の項で考察したとおり、気体の内部エネルギーは温度だけで求まるという性質があります。ここで気体は理想気体を対象としていますが、実際の大気も幸い普通取り扱われる温度では理想気体に近い挙動を示すと言われています。
    この時、圧力と体積には、
    pV=(2/3)U=nRT=NkT…(1)という関係が成立します。
    ここでUは内部エネルギーと呼ばれる量で、気体分子の平均エネルギーの総和となっています。従って、ここでは温度が一定なのでボイルの法則が成立します。
    【断熱変化】
    シリンダーを熱源から切り離し、熱の出入りの無い状態で圧縮及び膨張を行います。この時ピストンの行う仕事は、
    △W=F△l=pA△l=p△V (lは小文字のエルです。また、A△l=△V。)
    また、U=(3/2)pVから、U+△U=(3/2)(p+△p)(V+△V)…(2)
       △U=-△W=-p△V(仕事をすれば内部エネルギーは減り仕事を受ければ増える)
    であるから、(2)式は
       (3/2)pV-p△V=(3/2)(pV+p△V+V△p+△P△V)(最後の項は微小)
    これをまとめると、 -5 p△V=3 V△p→微分に直す
       dV/V=(-5/3)dp/p
    ∫dV/V=(-5/3) ∫dp/pとなるので、log p=-log V(5/3)
    すなわち、 pVγ=C(定数)…(3)、ただしγ=5/3とした。
    また、上式にpV=NkTを代入すると、
      NkTVγ-1=C →∴ TVγ-1=C’(定数)…(4)
    断熱変化の際のp、Vの関係を別途誘導してあります。
    断熱変化の際のp、Vの関係

    熱力学とエントロピー
    物理の世界
    scienceの部屋

    カルノーサイクル

    カルノー(Sadi Carnot、1796年パリ~ 1832年)は、熱機関の効率について画期的な発想で答えを見出した。もともとの出発点は一体熱エネルギーの何割までが仕事に変換できるのかということです。熱機関の複雑な要素を一切取り除き、温度がTHの高温熱源と温度がTLの低温熱源を用意し、理想気体を詰めたシリンダーを外側から暖めたり冷やしたりするサイクルを考えたのです。また、この過程には、
    (1)シリンダーが熱源に接した、温度が一定のままでの膨張と収縮
     →ボイル・シャルルの法則pV=nRTが成立する等温膨張・等温収縮
    (2)シリンダーが熱源から切り離された状態での膨張と収縮
     →pVγ=C(一定)、TV(γ-1)=C’(一定) (ポアソン公式)の成り立つ膨張と収縮
      ただし、γ=5/3、γ-1=2/3、γ/(γ-1)=5/2
    の組合せの4工程で成立する仮想の熱機関の思考モデルを構築しました。このモデルの概要は下図に示す通りですが、ここでの運動はすべて可逆過程であり得られる効率はTH、 TLを与えた時に得られる最大の効率となっているのが味噌です。可逆過程であっても熱エネルギーはすべてを仕事に変換することが不可能なことがこのモデルから示されます。

    カルノーサイクル
    【step 1.初めの状態】
     どこからスタートしても良いのでしょうが、まず始めにシリンダーが低温熱源に接していて、シリンダー内部に理想気体が詰まっている。その時の温度、体積、圧力は、
    TL=0℃=273K、V0=1m3、p0=1atm=1.013×105Pa
    状態方程式は、p0V0=nRTL から
    n=(p0V0)/( RTL)=1.013×105×1/(8.3×273)=44.7mol (R=8.3J/molK) としましょう。
    【step 1.等温圧縮】
     シリンダーが低温熱源に接したまま(温度がTL)、体積をV1まで圧縮する。V1=0.5m3とします。
    ボイルの法則より、p0V0=p1V1、すなわちp1=p0×(V0/V1)=2.026×105Pa
    【step 2.断熱圧縮】
     シリンダーを熱源から切り離し(断熱状態)、温度がTHになるまでさらにゆっくり圧縮する。温度TH=100℃=373Kとする。圧縮後の体積をV2とする。
          TLV1(γ-1)=TH2(γ-1)
          →V2=V1(T/TH)1/(γ-1)
          =0.5×(273/373)(1/(2/3))=0.313m3
          従って、p2=2.026×105×(373/273)5/2=4.42×105Pa 
          (∵γ/(γ-1)=(5/3)/(2/3)=5/2)
    【step 3.等温膨張】
     シリンダーを高温熱源に接触させた状態で(等温変化)、体積をV3まで膨張させる。
    この時は、ボイル・シャルルの法則から、p2V2/TL=p3V3/TL が成り立つが、V2、p2ともに未知数ではどこまで膨張させればよいか分からない。しかし、このサイクルは次の断熱サイクルで閉じなければならないので、初期状態V0、p0からサイクルを逆回りしてV3、p3を求めて見る。
          p0V0γ=p3V3γ、TLV0γ-1=THV3γ-1
          V3=V0(TL/TH) 1/(γ-1)=1×(273/373)(3/2)=0.626m3
          p3=p0(V0/V3)γ=p0((TH/TL) 1/(γ-1))γ=p0(TH/TL)γ/(γ-1)
          =1.013×105×(373/273)5/2=2.21×105Pa
    【step 4.断熱膨張】
     シリンダーを高温熱源から切り離し、温度がTLになるまでゆっくり膨張させる。その結果、状態は体積V0、圧力p0の初期状態に戻る。以上でサイクルが一回りするが、その前にstep.3で上で逆算で求めたp3、V3がボイル・シャルルの法則を満たしているがチェックしておく必要がある。p2V2=p3V3 であるから、
          p3V3=p0((TH/TL)γ/(γ-1)×V0(TL/TH) 1/(γ-1)=p0V0(TH/TL)
          p2V2=p1(TH/TL)γ/(γ-1)×V1(TL/TH)1/(γ-1)=p11 (TH/TL)=p0V0(TH/TL)(∵p00=p11)
    すなわち、サイクルは閉じることになり無事モデルは完成しました。上の数値例を下に示します。
    po1atmV01m3
    p12atmV10.5m3
    p24.31atmV20.313m3
    p32.18atmV30.626m3
    p01atmV01m3
    数値計算例
          さて、もう一度カルノーサイクルのポイントを整理します。まず、理想気体を扱っているので、内部エネルギーが温度に比例しているという関係が重要で、
    U=(3/2)pV=(3/2)NkTが成立します。
          まず、カルノーサイクルでは、断熱圧縮と断熱膨張の2つの断熱変化があります。最初の断熱圧縮では、(3/2)Nk(TH-TL)だけ、シリンダー内の内部エネルギーは増加しますが、断熱膨張の過程で(3/2)Nk(TL-TH)だけ失うのでキャンセルされて内部エネルギーは増減なし。断熱過程では、熱の出入りがないので内部エネルギーの増減はすべてピストンの出入りに使われてサイクルの仕事としてはキャンセルされてしまう。
          一方、断熱膨張(圧縮)の関係式は、THV2γ-1=TLV1γ-1、THV3γ-1=TLV0γ-1
    から、この2式の両辺を割り算することで、V3/V2=V0/V1が得られる。
    と言う訳で、エンジン出力として取り出せる仕事Wは、等温圧縮と等温膨張の2つの過程を比べれば良いことになる。
    △W=p△V(これはV0→V1)→WL=∫dW=∫pdV=p0V0∫dV/V=p0V0log(V1/V0)
    一方、WH=p2V2log(V3/V2) WL=NkTLlog(V1/V0)=-NkTLlog(V0/V1)=-(TL/TH)Nk TH log(V3/V2)=-(TL/TH) WH これより、
    QH/TH=WH/TH=-WL/TL=-L/TL カルノーサイクルは一巡する間に高温熱源からQHの熱エネルギーを受取り、低温熱源にQL=(TL/TH) QHを低温熱源に渡す。差引勘定をすると、 W=WH+WL=(1-TL/TH) QH エンジンが出力として取り出せる割合を熱効率ηと呼ぶが、 η=W/ QH=(WH+WL)/ QH=(QH+QL)/ QH=1-TL/TH つまり気体は低温熱源にQL=WLの熱エネルギーを渡し、高温熱源からQH=WHの熱エネルギーを受取る。最終的に熱効率ηは高温と低温の熱源の温度比だけで決まってしまう。QLは使われることのない熱量なので排熱と呼ばれるが、TL=0(絶対温度0)ならば効率は1になることに注目したい。

    カルノーサイクルをもう一度示します。
    カルノーサイクル1
    カルノーサイクル2
    カルノーサイクル3
    カルノーサイクルでは、結局(VA/VB)=(VD/VC)となるので、得られる仕事は、
    WA→B→C→D=W=R(T1-T2)log(VB/VA)となります。従って、
    QA→B:QC→D:W=T2:T1:(T2-T1)
    熱効率を
    η=W/Q=(Q2-Q1)/Q2=(T2-T1)/ T2
    温度比だけで、効率が決まってしまうのです。
    カルノーサイクルの図はp-V図で見るとあまり綺麗ではないけれど、T-S図に表すときれいな長方形になります。ここで囲まれた長方形の面積は、
    (SB-SA)(T2-T1)=△S(T2-T1)=Q2-Q1=W
    で丁度行われた仕事を表しています。エントロピーは一回りすると元に戻ることになりますが、高熱源を冷やしたり、低熱源に熱を与えたりして周囲の環境のエントロピーを増大されているのです。
    カルノーサイクル4
    ここで囲まれた長方形の面積は、
    (SB-SA)(T2-T1)=△S(T2-T1)=Q2-Q1=W
    で丁度行われた仕事を表しています。エントロピーは一回りすると元に戻ることになりますが、高熱源を冷やしたり、低熱源に熱を与えたりして周囲の環境のエントロピーを増大させているのです。

    熱力学とエントロピー
    物理の世界

    カルノーサイクルと熱力学のポイント

    熱力学はどうも人気が無いらしい。非常にとっつきにくく分かりにくい。私自身も大学での教養課程では、何だかエントロピーなんてあったなあ程度の記憶しかありません。退職後に色々読み直して、漸く分かりかけた段階です。
    熱とか仕事とか、力学と比べかなり抽象的。更に偏微分∂なんか出て来る。ところで、ネットでカルノーサイクルが良く分からないとの質問がありました。質問者は、カルノーサイクルを扱う時に、大気圧をどう取り入れるのがということでした。カルノーサイクルの説明では、シリンダー内の理想気体の圧力は、p0→p1→p2→p3→p0と変化するのですが、シリンダーの反対側の大気圧(p0としますか)は、効率の計算には全く影響していません。ここで、熱力学の重要な法則;熱力学の第一法則を忘れてはいけません。熱力学の第一法則は、閉じた系を対象にしています。そして、ここで閉じた系とはシリンダーの内部だけです。高温熱源、低温熱源も外部の条件。ここで、系はサイクル運動を行ってます。1周回ると元の位置に戻るのです。つまり、大気圧はシリンダーに対して何も仕事をしていません。
    熱力学の第一法則というのも、案外分かりにくい所があります。閉じた系に対して、熱と仕事がでたり入ったりします。系の中でエネルギーが保存されるのでなく、エネルギーが新たに突然、発生したり消滅したりしないということです。これは、ちょうど会社の簿記のようなもの。現金(熱)や商品(仕事)が出たり入ったり、金額ベースでは保存則が成り立っているようなものです。
    理想気体の状態は、状態方程式f(p,V,T)=0で表されます。たった3つの変数で表されるなんて大変便利なことです。p軸、V軸、T軸を取って、このfを表すと、3次元の曲面になってしまいますね。2次元なら普通の微分(接線方向)で間に合いますが、3次元の曲面では2方向の接線が必要。そのため、3つの変数のうちの一つを決めて(固定して)2つの接線方向を求めるのです。これが偏微分が頻繁に出て来る理由。その結果、各々の微分は全微分表示となります。
    たとえば、dT=∂T/∂V・dV+∂T/∂p・dp
    これは、温度の微小変化は、温度の体積に関する微小変化と圧力に関する微小変化の和として表されることを示します。温度と体積はバラバラには動けないわけ。
    一方、△E=△Q+△Wでは、QとWを関係づけるものは何もないので、△をdと出来ないわけです。dは全微分可能な時だけに使える約束だからです。でも、Eについては、dEが使えるので、QとWに´の付いた妙な記号が用いられています。熱力学独特な記号なので初めて見ると???となりますね。

    カルノー以外のサイクル

    カルノーサイクルは等温変化と断熱変化の組合せですが、それ以外にも色々なサイクルが考えられます。例えば、
          ①等圧・等積サイクル
          ②等圧・等温サイクル
          ③等温・等積サイクル
          ④断熱・等積サイクル
    ④は、オットー・サイクルとして知られているものでガソリン・エンジンの働きに近いとされています。①から④はどれも可逆過程となりますが、実際のエンジンで色々なロスがあり不可逆となるため効率がロスします。
    【等圧・等積の場合】
    このサイクルを下図に示します。
    等圧等積過程
    p-V図では、サイクルは長方形になるのでカルノー・サイクルよりもずっと簡単そうです。計算して見ると分かりますがこのサイクルで得られる仕事は当然、W=(p2-p1)(V2-V1)で長方形の面積です。
    p-V図では、等温線は直角双曲線のなるので、A、B、C、Dでの温度は異なることになります。温度が一番高いのがBで、一番低いのがDです。
    簡単のため、シリンダー内の気体を1モルとすると、気体の状態方程式pV=RTが成り立つので、各点での温度は次の通りです。
    TA=p2V1/R、TB=p2V2/R、TC=p1V2/R、TD=p1V1/R、
    そこで、このサイクルの効率を求めると
    ①A→B
    WA→B=p2(V2-V1)>0(仕事をする)
    Q A→B=Cp(TB-TA)=(Cp/R)( V2-V1) p2>0(熱をもらう)
    ②B→C
    WB→C=0(体積が変わらない)
    Q B→C=CV(TC-TB)=(CV/R)( p1-p2) V2<0
    ③C→D
    WC→D=p1(V1-V2)<0
    Q C→D=Cp(TD-TC)=(Cp/R)( V1-V2) p1<0
    ④D→A
    WD→A=0(体積が変わらない)
    Q D→A=CV(TA-TD)=(CV/R)( p2-p1) V1>0(熱をもらう)
    結局、全体の仕事は、A→Bと C→Dの和で、
    W=p2(V2-V1)+ p1(V1-V2)=(p2-p1)(V2-V1)となり、長方形の面積です。
    一方、もらった熱量は、D→A→Bの部分で、
    Q2=(Cp/R)( V2-V1) p2 +(CV/R)( p2-p1) V1
    となるけれども、効率ηは、 η=W/ Q2=(p2-p1)(V2-V1)/{ p2(V2-V1)+(CV/R)( p2 V2-p1 V1)}
    となり、残念ながらカルノーのようにη=1-(T1/T2)のように温度だけの綺麗な関係を得ることは出来ない。

    熱力学とエントロピー
    物理の世界
    scienceの部屋

    化学の世界

    目次    
    原子の発見 無機化学の世界 酸化と還元
    酸と塩基 有機化学の世界 異性体
    タンパク質とアミノ酸有機分子模型 糖類
    油脂細胞とは何か 水は特別な存在
    珪素と硫黄の世界 窒素とリンの役割

    原子の発見

     化学の色々な反応は、もとをただせば原子と原子の相互作用。でも、実際に原子の存在が確認されるのは、アインシュタインが登場するよりも後の時期なのです。
     高校の化学で、習うアボガドロ数。たしか、NA=6×1023 /molだった。アボガドロ(1776年~1856年)とは、イタリア・サルデーニャ王国トリノ出身の物理学者で、1811年に発見した『同圧力、同温度、同体積の全ての種類の気体には同じ数の分子が含まれる』というアボガドロの法則で有名な人。でも、アボガドロ数が数えられるようになったのは、ずっと後世の世界。
    それまでは、化学の世界での原子は一つの作業仮説(原子を考えた方が説明が簡単)としてしか認識されてなかったのです。モルという単位も1番軽い水素原子1gを1モルと決めてだけ。でも、こう決めることで、化学反応は定量的に理解されるようになって来ます。でもこんな状態で、元素の周期律表を完成させたメンデレーフの業績はやはりすごいと言わざるを得ません。

    【アボガドロの法則】
    アボガドロの時代は仮説でした。同一圧力、同一温度、同一体積のすべての種類の気体には同じ数の分子が含まれるという法則です。この同じ数としてエイヤーと決めたのがモルという数字です。1モルの水素分子は2g、酸素分子は16gとなることは、化学反応式を見れば理解できると思います。


     以下は、説明のため簡単な問題を解いてみます。
    【問題】22.4リットルの瓶の中に、水素が入っています。中は1気圧に保たれています。1気圧のもとでは、どのような気体も22.4リットルで1モルとなることが実験的に確認されていました(アボガドロの時代)。この中に水素の分子は6×1023個(アボガドロ定数)ある訳ですね。勿論アボガドロ数が実測できるようになるのはズート後のこと。これから、水素原子の重さと大きさは出て来るでしょうか。
    【解答】水素は、普通単体では存在出来ないので、H2の水素分子となっています。
    この水素分子1個の占める体積Vと重さWは、
    V=(22.4×103cm3)÷(6×1023)=3.73×10-20 cm3
    水素分子1モルは2gですから
    W=2÷(6×1023)=3.33×10-24
    従って、水素原子1個の重さは、この半分の1.67×10-24gと分かります。これは、物理の本に出ている陽子及び中性子の質量と同じです(実際は中性子の方がわずかに重い)。

       高校生では、かなりの生徒がアボガドロ数は、アボガドロが発見したと思っているのではないでしょうか。でも、実際の科学の歴史は全く異なっています。アボガドロ数を求めるには、量子論の裏付けが必要で、高校生レベルでは手も足も出ません。上の問題とは逆で、原子の大きさが分かって初めてアボガドロ数が求まるのでした。ということは、アボガドロの法則は、実験的事実で、このことは原子の存在とは無関係。原子はあくまでも作業仮説。高校レベルの化学では、作業仮説の段階ですべて説明されてきたことは、歴史によって証明されています。確かに、原子の存在を認めれば化学の現象の説明には楽そうに見えるかも知れません。ただここのところをはっきりさせておかないと化学への理解に対してかえって混乱を招くことになるでしょう。

    ギリシャの哲人  物資を細かく分けると、分子に行きつく。鉄もタンパク質もどんどん細かく分けて行っても鉄、たんぱく質に変わりはない。考えられる最小の単位が分子。原子はその分子を分けるとその根源的な構成要素として出て来るものだ。古代から万物はより簡単な要素の組合せから出来ているとの考えはあって、古代ギリシアのデモクリトスの原子論、中国でも木火土金水(もっかどごんすい)等の陰陽道みたいな考えもあった。陰陽道は、実生活にも応用されたでしょうが、原子の存在は、証明することはもちろん不可能でした。
       近代化学が発展して、化学反応に定量分析の方法が確立して来ます。この結果、反応の前後では系の質量は保存される(質量保存の法則)や反応する物質の質量同志は必ず同じ簡単な整数比になる。このような事実の積み重ねから、物質の基本として元素(化合物とは異なるとの意味で)というものがあることが分かってきます。元素と原子はちがうものですが、元素の構成要素の最小のものとして原子のようなものを作業仮説として設定すると大変便利であることが分かって来ました。また、元素の相対質量(もっとも軽い水素を1として、現在は炭素を12とする)を、その順に並べ表にすると、周期的に似た元素があらわれることをメンデレーフという人が発見します。でも、この当時は、実際に原子の存在を確認できると信じていた人は、物理学者も含めていなかったようです。ということは、原子が結合してできる分子の存在も同じく確認は出来ていなかったはずです。

    化学の世界
    scienceの部屋

    無機化学の世界

    酸化と還元

    酸化と還元は高校の化学においての重要な概念。生物は食べ物を酸化してエネルギーを得る。ということは、光合成はCO2を還元して栄養をつくるのか。ということは、酸化とはエネルギーを放出する反応で、還元はエネルギーを蓄える反応ではないか。意外と奥の深い内容を秘めている可能性がある。化学反応においては酸化と還元は同時に進行していることもポイントです。
    1.酸素のやり取り
        酸素をもらう反応が酸化、酸素を放出する反応が還元。
                 2Cu+O2→2CuO
    銅が酸化銅になった。
                 CuO+H2→Cu+H2O
    酸化銅が還元されて、銅地金にもどる。
                 2Mg+CO2→2MgO+C
    熱したマグネシウムを炭酸ガスの入った瓶にいれても燃える。マグネシウムは酸化され、代わりにCO2を還元する。

    2.水素のやり取り
        水素を放出する反応が酸化、水素をもらう反応が還元。
                 2H2S+O2→2S+2H2O
    硫化水素は水素を奪われて酸化され、代わりに酸素が還元された。酸素も還元されるんですね。
          2H2+O2→2H2O この場合は、水素は酸化されて、酸素は還元されたというのでしょうね。

    3.電子のやり取り
        電子を失うのが酸化、電子を受け取るのが還元。
                 2Cu+O2→2CuO
    Cuは電子を失いCu2+になり、酸素は電子を受取りO2-になります。でも、電子の存在は20世紀になるまで分からなかったのです。イオンや電荷は知られてましたが。

    4.酸化数で決める
        酸化は酸化数を目安に考えるのが手っ取り早い。酸化数は次のように求められます。酸化数が増えれば酸化された。酸化数が減れば還元されたことになるのです。
    ①単体の原子の酸化数は0
    ②イオンの酸化数は、その価数
    ③化合物中のH、Oの酸化数は原則1、-2とする
    ④化合物を構成する原子の酸化数の総和は0

    実例
    1. CH4:Cの酸化数をxとすると、x+(1×4)=0からx=-4 (炭素は還元されている)
    2. CO2:Cの酸化数をxとすると、x+(-2×2)=0からx=4 (炭素は酸化されている)
    3. SO2:Sの酸化数をxとすると、x+(-2×2)=0からx=4 (硫黄は酸化されている)
    4. H2SO4:Sの酸化数をxとすると、(1×2)+x+(-2×4)=0からx=6 (硫黄は酸化されている)
         SO42- :Sの酸化数をxとすると、x+(-2)×4=-2からx=6 (上と同じです)
    5. NH3→Nの酸化数をxとすると、x+(1×3)=0→x=-3 (窒素は還元されている)
    6. HNO3:Nの酸化数をxとすると、1+x+(-2×3)=0からx=5 (窒素は酸化されている)
         NO3:Nの酸化数をxとすると、x+(-2×3)=-1からx=5 (上と同じ)
    7. C2H6:Cの酸化数をxとすると、2x+(1×6)=0からx=-3 (炭素は還元されている)
    8. MnO4-:Mnの酸化数をxとすると、x+(-2)×4=-1からx=7
    対象となる原子の酸化数が増加した時その原子は酸化されたといい、反対に酸化数が減少した時に還元されたという。
    酸化と還元は地球環境にとって重要な要素です。地球上に生命が誕生するためには、大気中の気体が十分還元されていて、生命の構成要素となる前駆物質が作られていなければならないからです。酸化と還元という化学的なプロセスには電子がかかわっているのです。電子を失う反応が「酸化」、電子を得る反応が「還元」です。電子はエネルギーの通貨のようなもので、エネルギーと交換できるものです。還元で電子を得ることは銀行にお金を預けるようなものです。例えば、石油も石炭も「還元」された状態。だから燃やすと大量のエネルギーが得られるのです。人類は化石燃料を大量消費することで過去に地球に貯金(還元)されていた貯金を大量に使い果たしています。温暖化など色々な影響が心配ですね。
    例えば、2C2H6+5O2→4CO2+6H2O
    これは炭化水素エタンの燃焼で、C2H6→2CO2
    炭素の酸化数をxとすると、左辺は2x+6=0→x=-3
    右辺は、x-2×2=0からx=4、炭素の酸化数は-3から4に増加。酸化されています。光合成は還元反応。呼吸は酸化反応です。

    化学の世界
    scienceの部屋

    酸と塩基

    酸と塩基の考えは化学の研究の上で重要な考えのようです。何故なのでしょうか。学んでいくうえで分かるでしょうか。
    酸と塩基の定義としてはスウェーデンのアレニウス(1859~1927)のものがあります。定義では、水素イオンHと水酸化物イオンOHを用います。
    ●酸とは、水に溶けてHを出すもの
    ●塩基とは、水に溶けてOHを出すもの
    つまり、
            酸;HA→H+A 
            塩酸;HCl→H+Cl (一価の酸)
            硝酸;HNO3→H+NO3 (一価の酸)
            硫酸;H2SO4→2H+SO42- (二価の酸)
            酢酸;CH3COOH→H+CH3COO (一価の酸)
            リン酸;H3PO4→3H+PO43- (三価の酸)
            塩基;BOH→B+OH
            水酸化ナトリウム;NaOH→Na+OH (一価の塩基)
            水酸化カルシウム;Ca(OH)2→Ca2++2OH (二価の塩基)
    とりあえず、どんな物質が酸で、どんな物質が塩基かは何となく分かって来る。でも、何故この考えが大事なのか今一つありがたみが分からない。
    酸化と還元で次のようなことを学んだ。電子を失うのが酸化、電子を受け取るのが還元
    酸では、Hイオンを放出する。だから化学反応でこの水素を受け取れはその物質は還元されたことになる。
    塩基では、OHイオンを放出する。だから化学反応でこの水酸基を受け取れば電子を取られて酸化されることになる。
    【追記】ガラスはアルカリに溶ける
    学校で化学の実験をしているときには気がつかなかったが、濃厚なアルカリ溶液はガラスの容器には入れないようだ。ガラスもガラスに種類によるがアルカリや熱水に侵されることもあるらしい。そのため原則としてペットボトルのようなプラスチックの容器に入れるのだそうだ。 濃厚なアルカリ溶液(実際には水酸化ナトリウムや水酸化カリウムなどの強塩基性水酸化物だけだろうが)空気中の炭酸ガスを吸収する。また、濃厚な強塩基性溶液は粘度も高く、ガラスの「へり」に残留しやすく、固着の原因になる。ガラスの主成分である珪酸ナトリウムが侵されるためだそうだ。
    また、ガラスを粉砕し、煮沸するとpHが高くなるそうだ。同じ水でもペットボトルに入っている水とガラス容器に入っている水では、珪酸の濃度が後者の方が高いことが確かめられている。ガラス製のポットを長く使うとシリカなどが溶出するため、穴があくこともあるという。ボーキサイトは、珪酸アルミニウム等の鉱物が熱帯地方の暖かくて大量の雨のため、珪酸を徐々に溶出してできると言われている。(2019.4.7)
    【酸と塩基を再定義】
    アレニウスの定義では、酸と塩基は水に溶ける物しか定義できない。この欠点を補うため、ブレンステッドとローリーは、アレニウスの定義において中心的な役割を果たしているH、すなわちプロトン(陽子)をベースとして、酸と塩基の概念を以下のように再定義した。
    ●酸とはプロトンH を他の物質に渡すことができる物質
    ●塩基とはプロトンHを他の物質から受け取ることができる物質
    よってブレンステッド・ローリーの定義における酸と塩基をそれぞれプロトン供与体、プロトン受容体ともいう。なおブレンステッド・ローリーの定義では通常の分子である場合はもちろん、イオン化した分子に対しても酸や塩基が定義できる利点がある。
    アレニウスの定義との関係
    アレニウスによる酸の定義は、ブレンステッド・ローリーによる酸の定義における「他の物質」が水分子であり、しかもHを水分子に渡す原因が解離である場合に相当するので、ブレンステッド・ローリーによる酸の定義はアレニウスによる酸の定義を含意する。
    一方ブレンステッド・ローリーによる塩基の定義はアレニウスによる塩基の定義と見かけ上大幅に異なるが、アレニウスによる塩基の中に存在するOHが「他の物質」である反応相手の酸からHを奪って水分子H2O を生成すると考えれば、ブレンステッド・ローリーによる塩基の定義がアレニウスによる塩基の定義を含意する事が分かる。

    アレニウスの定義と違い、定義の範囲を水溶液に限定していないので、アレニウスの定義にあった「水溶液にしか定義できない」という欠点は解消されている。
    また、ブレンステッド・ローリーの定義は、アレニウスの定義と違い、アンモニアが水に対して塩基になる事を説明できる。実際、アンモニアが水分子と反応して加水分解する過程 NH3  +  H2O   ←→  NH 4+   +   OH
    において、アンモニアは水分子からH を奪っているので、ブレンステッド・ローリーの定義における塩基である。
    酸と塩基の定義は、更に拡大されており、ルイスの定義、ウサノビッチの定義などが提案されている。

    化学の世界
    scienceの部屋

    有機化学の世界

    目次    
    分子の構造式---レゴブロックと同じだ 異性体 有機分子模型
    タンパク質とアミノ酸
    アミノ酸の構造油脂 糖類
    細胞とは何か

    分子の構造式---レゴブロックと同じだ

     有機化学はある意味で無機化学よりも学びやすい。主役は常に炭素であり、水素は補助役、その他の元素は本当に脇役になる。化学的性質は脇役が大活躍するのですが。炭素は、最外殻電子を4つもつため、4本の共有結合の手をもっているため、ちょうどレゴブロックを組み合わせていくように、巨大な分子も作り出すことが可能になる。実際、化学を学ぶため分子模型をつくれるブロックが販売されています。
    まず、初めに炭素1個。4個の手に水素が一つずついて出来るのがCH4(メタン)。ちょうどテトラポッドの形。有機化合物の分子では、分子に加えて構造式も大事。下図に例を示します。
    有機化合物構造式
    ここで、簡略図の書き方を覚えると便利。あなたは化学のレゴブロックの達人に変身できます。コツは、炭素は各線分の端点に位置します。水素は手が1本。CもHも表記しません。残りの元素の手の数を考えながら付け加えて出来上がり。市販の分子模型ブロックの穴の数は手に数に対応しています。穴の配置は立体的で組み立てるのはパズル性があり結構面白いです。図では平面で書かれているので組み立てて見ると最初思っていたのと形が少しことなります。手に数は、炭素が4、水素が1、酸素が2、窒素が3、燐が5となっています。

    化学の世界
    有機化学の世界
    scienceの部屋

    異性体

    男性・女性の異性ではなく、同じ化学式でも炭素の手の握り方で異なった形や性質の分子があることです。下図を見て下さい。
    異性体
       炭素と水素だけの飽和炭化水素(2重結合、3重結合がない)CnH2n+2でも、炭素の数が増えると異性体は急激に増えていきます。不飽和の場合は、2重結合、3重結合のある場所も関係します。
    回転異性は、簡単に回せそうですが、シス・トランスの関係は2重結合があるので回転は不可能でしょう。また、光学異性も鏡に映した関係で決して重ねることが出来ません。これらは、D型、L型として区別していますが、dextro-rotatory(右旋性)、levo-rotatory(左旋性)に由来するらしいです。これは、光(偏光)をあてた際に旋回が逆になることからきているのです。   生物現象を扱う生化学の分野では、これは極めて重要な点で、何故かタンパク質の原料としては、L型のアミノ酸しか使われることがありません(多少の例外はあるらしい)。また、エネルギー源としてはD型の糖しか使われません。生命の歴史の初期にアミノ酸はL型、糖はD型と決まったからと考えられています。人工的に合成するとL型、D型は同じくらい出来てしまうのに、生体での化学反応はキチンと区別がなされています。生体では化学反応を促進するには酵素というたんぱく質が使われますが、酵素は普通の触媒とは異なり特定の条件下で特定の物質としか反応しないという特徴があります。ここに秘密があるのではないかと考えられ要るようです。
    トランス脂肪酸の健康への影響が問題になったことがあります。生体はL-タンパク質D-糖しか使えないのと同じように、シス型の脂肪酸しか使えないようです。もちろん、自然界にも食品由来のトランス型の脂肪酸は存在しているので、全く摂取しないわけには行きません。また、大量の摂取は癌などもリスクが増えることも指摘されています。厚生労働省の見解では、日本人は欧米人に比べて脂肪の摂取量が少ないから問題は無いと発表しました。確かに、肉や魚、あるいはナッツ類に含まれる脂肪は問題にならないのは明らかです。
       問題なのは、工業的に生産される食用油でしょう。むしろ植物性の油の方が問題かも知れません。安価に大量に生産するためには、加熱とか水素を付加するという工業的なプロセスがどうしても入り込みます。そうすると必ず、半分程度はトランス脂肪酸が含まれてしまいます。現状の技術では分離出来ないのです。昔ながらの農家の庭先で行うような方法では、大手の食品産業は儲かりません。厚生労働省が何故あのような見解を発表したか意図は明らかでしょう。

    化学の世界
    有機化学の世界
    scienceの部屋

    有機分子模型

    分子模型のブロックを入手しました。各原子に共有結合の価数(手の数)に相当する穴が空いていて、手に当たる棒をつないで組み立てていきます。
    まず最初の写真は、空気の成分、水素H2、酸素O2、窒素N2、水蒸気(水)H2O、炭酸ガスCO2です。水素は白、酸素は赤、窒素はライトブルー、炭素は黒の球で表されています。水素、酸素、窒素はそれぞれ単結合、二重結合、三重結合になっている点にご注意下さい。
    気体分子
    炭化水素
     炭化水素の例です。炭素が一つ増えるごとに、メタン、エタン、プロパンと呼び名が変わっていきます。炭素は腕が4本、水素は1本で、飽和炭化水素の一般式は、CnH2n+2で表されます。
    メチル及びエチルアルコール
    炭化水素のHをOHで置き換えたものをアルコールと称します。OHの数で一価、二価、三価などがあります。晩酌で毎晩飲むのはエチルアルコール。高級アルコールは絶対飲んではいけません。
    アルコールの酸化1
    アルコールは、アルコール→アルデヒド→カルボン酸のように酸化される。最初の反応では、水素2原子奪われ、次の反応では酸素が1原子付加される。メチルアルコールは、ホルムアルデヒド→蟻酸となる。ホルマリンとして市販されているのは、35~38%ホルムアルデヒド水溶液。理科の実験室で生物の標本を入れてあるあれです。酒類の主成分のエチルアルコールは、アセトアルデヒド→酢酸と言う順で酸化される。アセトアルデヒドを分解する酵素を生まれつき持たない人は、アルコールを飲むと具合が悪くなり健康にも悪影響があります。
    アルコールの酸化2
    ベンゼンは、芳香族炭化水素。原油の中にも含まれる。ベンゼン環という炭素が6角形環状に並んだ構造になっており、二重結合が3つというユニークな形をしている。この2重結合と単結合が互いに交換し合って安定な状態になっている。水素を他の官能基で置換することで、色々な分子を構成します。付加反応よりも置換反応の方が起こりやすいという特徴があります。ベンゼン由来の化合物→クロロベンゼン、アニリン、フェノール(石炭酸)、トルエン等。
    ベンゼン
    トリニトロトルエンは、TNT火薬。ニトログリセリンも爆発する液体です。
    トリニトロベンゼン ニトログリセリン

    化学の世界
    有機化学の世界
    scienceの部屋

    タンパク質とアミノ酸

    タンパク質は生物の細胞を構成する大事な物質。タンパク質を加水分解するとアミノ酸になります。逆にタンパク質は沢山のアミノ酸が脱水縮合(ペプチド結合という)してできたもの。アミノ酸は不斉(ふせい)炭素と言われる1つの炭素にアミノ基(-NH2)、カルボキシル基(-COOH)、水素(-H)、適当な置換基(-Rとする)の4つがついた構造をしており、2種類の光学異性(鏡像異性)があり、それぞれL型、D型と呼ばれていますが、生物が利用できるのは何故かL型だけです。食事で摂取したタンパク質は、消化で分解されてバラバラのアミノ酸となり小腸から吸収されて、DNAやRNAの指令に従って再度合成されてタンパク質になって体の一部に生まれ変わります。
    タンパク質とアミノ酸

    化学の世界
    有機化学の世界
    scienceの部屋

    アミノ酸の構造

    アミノ酸がペプチド結合して、さらに立体的に構造をしているのがタンパク質。総ての生物のタンパク質は20個のアミノ酸の組合せで出来ています。中心にはアミン基、カルボキシル基、水素、側鎖基の4つの全く異なった基が結合しており、この炭素は不斉炭素と呼ばれます。そのためL型、D型の鏡像異性体があるが、生物に利用され自然界に存在するアミノ酸はすべてL型となっています。生物が単一の祖先から進化してきたことを示唆しているのでしょう。アミノ酸の基本構造は、みな同じであり化学的な性質の違いは側鎖の違いに依存している。 アミノ酸の例1
    側鎖を薄紫の玉で表しています。
    アミノ酸の例2
    アミノ酸の構造式
    カルボキシル基-OHとアミン基のHが取れて、脱水縮合がおこり、ペプチド結合が作られます。これが長くなり、さらに折りたたまれて複雑な立体構造となります。
    ペプチド結合
    以下、生物の細胞を構成する20個のアミノ酸の一覧を示します。
    20種のアミノ酸

    化学の世界
    有機化学の世界
    scienceの部屋

    油脂

    生物の体にはいたるところに油脂が含まれています。油脂は、グリセリンという3価のアルコールと脂肪酸というカルボン酸の一種3個が脱水縮合したものです。グリセリンはどの油脂にも共通ですので油脂の個性は脂肪酸の性質で決まります。脂肪酸は長い炭素鎖を持っていますが、その中に二重、三重結合を含むものを不飽和脂肪酸、含まないものを飽和脂肪酸と称しています。動物性の油脂は主に飽和脂肪酸ですが、植物や魚の油脂には不飽和脂肪酸が含まれています。青魚に含まれ健康に良いと言われるEPAやDHAは不飽和高級脂肪酸(高級とは炭素の数が12以上の長い炭素鎖からなる)です。
    油脂の構造

    化学の世界
    有機化学の世界
    scienceの部屋

    糖類

    分子式がCm(H2O)nと表せる分子を炭水化物と言います。一番簡単な形のグルコース(ぶどう糖)とフルクトース(果糖)は、単糖類と呼ばれます。単糖類は脱水縮合によってより大きな分子を作ります。数百から数万個つながったものがデンプンやセルロースです。
    糖の構造

    糖の脱水縮合

    化学の世界
    有機化学の世界
    scienceの部屋

    細胞とは何か

    人の体は60兆個(6×1013個)の細胞からなっていると言われます。総ての生物は、細胞から出来ています。細胞とは、一言で言うと外界と遮断された小さな、小さな袋です。生命活動とは、この袋を維持し、さらに増殖していくことです。そのためには外界とのエネルギーや物質のやり取りが不可欠です。細胞説という生物学の基本的な前提があります。重要な教義は次の3つ。ユークリッド幾何学の公準みたいなものですか。
           1.細胞は生命の基本単位である。
           2.総ての生命体は細胞から構成される。
           3.総ての細胞は既に存在している細胞から生じる。
    この前提を認めましょう。すると、まず始めにでは、細胞とは何かに答えなければなりません。例えば、ウィルスは細胞ではないので生物と呼ばないのでしょう。ウィルスは自己増殖するので3は満足していますが。ところで3に関しては、では最初の細胞は。生命の起源の謎は残されたままです。
    ところで、細胞はどうして小さいのでしょうか。それは、細胞という袋の容積と表面積の関係にあります。つまり、
           1.細胞の容積は、細胞が単位時間当たりに行う化学反応の量を決定する。
           2.細胞の表面積は、細胞が外部環境から取りこむ物質の量と外部環境へ排出する老廃物の量を決定する。
    例えば、細胞を球とすると、容積は(4/3)πr3、表面積は4πr2、その比は1/3rとなる。rは物質の移動距離に比例するでしょう。
    つまり、細胞は基本機能が満足される限りできるだけ小さい方が良いことになる。ほとんどの細胞は1~100μm。光学顕微鏡で見える範囲です。
    生物学者は、総ての生物を3つに分類する。古細菌、真正細菌、真核生物である。古細菌と真正細菌はまとめて原核生物と呼ばれる。進化の上では、最初の細胞が古細菌と真正細菌の分化し、その後真正細菌から真核生物が進化したものと想定されている。
    真核生物の細胞は、細胞の中にさらに膜で囲まれた幾つかの細胞内コンパートメントを持っていること。細胞の中に別の細胞がある入れ子構造とことでしょうか。このコンパートメントの一つが核と呼ばれるもので、遺伝物質(DNA)を持っている。それぞれのコンパートメントの中では、それぞれ特異な化学反応が進行する。真核生物には、原生動物、菌類(真菌類)、植物、動物と我々が普段生物として認識しているほとんどの生物が含まれています。ここまで見て来ると、生命の起源を探る旅は、まず原核生物の実態を知らねばならないようです。
    【真核生物の発生】
    最初の原核生物は多分環境から養分を体の表面から直接取り込んでいたのだろうと想定されています。海中には栄養塩がたくさん溶けていて特に食物を食べる必要もなかった平和な世界だったのでしょう。最古の原核生物は、化石から35億年前には現れたものと推定されています。地球が生まれたのが46億年前。生命誕生まで10億年以上要したわけです。最初の真核生物が登場するのが15億年まえからですから、20億年間は原核生物だけの世界が続いていたわけです。そのうち海水中の養分が不足してきたためか、原核生物のあるものは光合成を始めるようになります。この時から地球大気にはどんどん酸素が蓄積されるようになります。また、ある原核細胞は別の原核細胞を飲み込むことで栄養を摂取するようになります。飲み込まれた細胞が消化されずに、中に閉じ込められ、細胞内での共生を行うようになったと考えられています。細胞内の細胞が特別な役割を分担して、宿主も下宿人のともに利益を得るというより進化した細胞が出来上がったわけです。
    光合成原核生物から今の植物の葉緑体が生まれたのだろうと推測されています。また、ミトコンドリアも大きな原核細胞に飲み込まれた呼吸機能を持った原核細胞から進化したものと推定されています。ちょうどそのころ増加した大気中の酸素の毒性を消去してくれるため、進化上非常に有利に働いたはずです。因みに、葉緑体もミトコンドリアも体内に独自のDNAを持っており、もともと独立した原核細胞であったことが示唆されています。この考えを細胞内共生説と言い、今ではかなり多くの研究者に支持されています。

    化学の世界
    有機化学の世界
    scienceの部屋

    水は特別な存在

     水は、我々の生活のいたる所に存在していますが、水分子は極めて特異な化合物でもあることも知っておかねばなりません。
    1.分子サイズから見て異常に高い沸点。
    2.分子サイズから見て異常に高い融点。
    3. 分子サイズから見て異常に大きい蒸発熱。
    4. 分子サイズから見て異常に大きい融解熱。
    5.きわめて大きな比熱。
    6.固体になる時体積が大きくなることがあるのは水だけ。
    7.色々な物質を溶かすことができる。
    8.水素結合と特別な構造を取ることができる。


    水と多分子の比較
    ほかの液体と比べ、何から何まで非常に特別なのです。その秘密は、水分子の水素結合という独特の形に起因しているとされていますが、まだ完全に解明されたわけではないそうです。まず、沸点を見ます。水の分子は、ちょうど正4面体の2つの頂点に水素ついています。ちょうどメタンの分子と良く似た形です。メタンは炭素原子にちょうど対称に水素原子が4つついた形です。炭素の原子は結合の手が4本ある、第14族に属する原子です。周期律表では、下に向かって炭素C、珪素Si、ゲルマニウムGe、錫Sn(すず)と続きます。立体的な対称性から、H-C-Hの角度は109.28度ですが、H-O-Hも角度が105度と少し小さいながら近い値となっています。これら14族系の分子の融点をみると、分子が重くなるほど融点が高くなっています。これらは常温では気体で液体にするには相当に冷やす必要がある訳です。いずれにしろ分子量18の水が常温で液体であること自体、大変不思議なことなのです。
     なお、常温で液体の元素は臭素Br(融点-7.2℃)と水銀Hg(-38.83)の二つだけ。もう少し高温まで考えると、フランシウム、セシウム、ガリウム、ルビジウムなどあるが。臭素はハロゲン族(17族)でフッ素、塩素、臭素、ヨウ素となりますが、軽いFとClは気体、重い要素は固体です。一般に14から17族の元素の水素化合物は、族毎に比較すると、分子量が大きくなるほど、沸点、融点が高くなる傾向がある。ただし、第二周期の値が若干異なるのが気になる。まずは、17族フッ化水素の沸点、融点が異常に高い。16、15族の水、アンモニアも沸点、融点が異常に高い。これも水素の水素結合のせいであります。
     次に、物質の比熱を比べて見る。単位はJ/g・K。
    水…4.217、氷…2.10、ポリエチレン…2.23、ガラス…0.67、鉄…0.435、銅…0.379、銀…0.235、鉛…0.129。
    色々並べたが、どうも水の比熱はダントツに大きいようだ。因みに気体の比熱は、気体の種類が異なれば異なる値になりますが、モル比熱というものを使うと次のように簡単に比較できるようになります。モル比熱に直すには、1gの気体の比熱に分子量をかければで出来ます。
    すなわち、
    単原子分子
    ヘリウムのモル比熱:5.3232×4=20.928 J/mol・K
    アルゴンのモル比熱: 0.523×40=20.92 J/mol・K
    2原子分子
    水素のモル比熱: 14.385×2=28.716 〃
    窒素のモル比熱: 1.034×28=28.95 〃
    酸素のモル比熱: 0.922×32=29.502 〃
    塩化水素のモル比熱:0.812×36=29.232 〃
    3原子分子
    水蒸気のモル比熱: 2.051×18=36.918 〃
    二酸化炭素のモル比熱:0.837×44=36.826  〃
    それ以上
    メタンガスのモル比熱:2.210×16=35.36  〃
    理想気体のモル比熱は、気体定数8.317 J/mol・Kに対して単原子分子、2原子分子、3原子分子でそれぞれ、(5/2)、(7/2)、(9/2)倍、すなわち20.79、29.11、37.46に近い値となっています。 固体の場合もモル比熱で表すと、
    水のモル比熱: 4.217×18=75.91 J/mol・K 
    氷のモル比熱: 2.10×18=37.8 J/mol・K
    鉄のモル比熱: 0.435×55.85=24.3 J/mol・K

    化学結合には、共有結合、イオン結合、金属結合、配位結合などがありますが、これらと比べて力はやや弱いのですが水素結合といる水分子や一部の水素を含む小分子にみられる水素結合というものがあります。詳細については少し勉強してから紹介したいと考えています。
     ここでは、この水分子の特異性が、地球の歴史、生物の歴史に大きな役割を果たしてきたことについて述べて見たい。地球誕生の時点では、地球は毎日隕石が降り注ぐマグマオーシャンともいうべきドロドロの火の玉の溶岩の海のようだとも言われています。やがて地球が冷えて地殻から水が絞り出されて、大気中で凝結して雨となって地表を急激に冷やしていきます。この冷却には水が大きな蒸発熱を奪うことも幸いしています。このようにして海が誕生して、海からの水分蒸発→大気中の凝結→降水のサイクルが出来たことがその後の地球システムの安定化に大いに寄与します。
    また、海水はまた色々な栄養成分を溶かすことが出来るので生物の発生の準備を行うことが出来ました。生命を造るもとになる分子(アミノ酸や脂肪)には、たいてい親水性の部分と疎水性の部分を両端に持っており、自然と細胞のように一つの丸まった形の膜をつくるようになり、原始細胞が生まれます。これも水素結合を利用していると言われます。
    多細胞生物が発生するまでは、地球が全球凍結となったことが3度ほどあったことが知られていますが、氷が水よりも軽いと性質からか、海の中に凍っていない海水が残っている場所が確保されていて、いくらかの生物が生き残ることが出来たのだと想定されています。
    その後も地球環境に対して水の果たした役割は計り知れないでしょう。

    化学の世界
    scienceの部屋

    珪素と硫黄の世界

    元素の周期律表を確認して頂きたい。14族~16族、炭素Cの下に珪素Si、窒素Nの下に燐P、酸素Oの下に硫黄Sが位置している。これらは化学的に良く似た性質を持つことが知られています。ただし、原子の大きさから上のものほど沸点が高く気体になり易く、下に行くと液体、固体と変わっていきます。
    まず、炭素と珪素を比べ見ます。炭素は有機化合物を造ります。結合の手を4本持って、糖、タンパク質、脂肪の他、生命を構成するための元素です。珪素も同じような性質があるはず。昔はSFでは、炭素の代わりに珪素を主体とする生命体なども考えられていました。どうもその可能性は無いようですが。その代り、地球の岩石には大量の珪素が含まれています。SiO2は固体ですが、CO2は気体。この差が大きいですね。珪素は英語でsilicon。コンピュータのチップの重要な原料は、珪素が主体。人工頭脳は人間の脳を追い越してしまう可能性もあります。珪素が炭素に勝利するということですかね。
    次に酸素と硫黄。H2Oは水ですが、H2Sは硫化水素。地球の歴史で、最初は地表には、酸素がありませんでした。酸素は化学反応をしやすいため、単体では存在できないようです。地球以外の太陽系の惑星で大気に酸素が含まれているものはありません。だから、初期の生命は酸素を利用できないので、代わりの硫黄を使っていたと考えられています。シアノバクテリアが誕生してからも、数億年は硫黄を使う細菌達の天下だったと考えられています。硫黄を利用する細菌は今でも、深海の熱水鉱床の近くとか温泉とかで生き続けいます。シアノバクテリアが光合成を行い酸素を発生するようになって、現在の真核細胞の生物が現れるようになります。でも、最初の生命の誕生には硫黄が不可欠だったのかも知れません。硫黄を利用する細菌達、地球環境が悪化してほとんどの生物が絶滅した後、自分たちの天下がまた来るものとひたすら待ち続けているのかも知れませんね。
    似た元素どうしでもずいぶん働きが違いますね。NとP、NaとKなども比べて見ると面白いかも。

    化学の世界
    scienceの部屋

    窒素とリンの役割

    生物の細胞を構成するには、窒素NとリンPが非常に大切だ。人の体はタンパク質からできている。たいていの細胞もそうだ。蛋白質には窒素が不可欠だ。つまり、タンパク質はアミノ酸が連なったもの。アミノ酸を作るアミノ基とは―NH2でアンモニアから水素原子が取れたもの。
    一方、DNAの情報からアミノ酸の配列が決まる。また、DNAはデオキシリボ核酸という化学物質です。長く紐(ひも)状につながって染色体という構造を作り上げています。この核酸を作るのに必要なのがリンです。また、生物がエネルギーを得るために使うのが、ATPとかADT、アデノシン三(二)リン酸で、ここでもリン(リン酸)が大活躍。
    栄養学では、三大栄養素として炭水化物、脂肪、タンパク質があげられていますが、この中で、窒素が入っているのはタンパク質だけ。リンはどのように体に取り入れるのでしょうか。また、必須アミノ酸は体内で合成できないらしいので、タンパク質の摂取必要量もここのアミノ酸毎に計算しないと意味がないように思うのですが。
    また、植物は光合成で自分の栄養を作ると言われていますが、光合成で作られるのは澱粉(でんぷん)などの炭水化物、ここから窒素やリンを使って、核酸とアミノ酸を合成できないと細胞を作ることはできないはずです。核酸とアミノ酸こそ生命の源。窒素とリンの循環にも目を向けていく必要がありそうです。

    化学の世界
    scienceの部屋

    量子力学の世界

    シュレディンガーの方程式

     シュレジンガー(Erwin Rudolf Josef Alexander Schrodinger)の方程式は、量子に関する工学的応用においては基本中の基本。ところが何故こうなるかと問われると、結局量子の世界はこういうものと理解するしかない。ここでは、簡単な誘導があったので紹介したい。ここで行うことは、ド・ブロイの波を一つの関数として、式を導くことです。まず、前提条件として
                    E=hν        (1)
                    p=h/λ         (2)
                    E=p/2m+V       (3)
    ここで、(1)は、プランクのエネルギーの量子化、アインシュタインの光量子仮説で有名な式。νは振動数。h はプランク定数。 因みに ħ=h/2πも良く使われる。二つ目の式(2)は、ド・ブロイの物質も波だという式。λはその波長。三番目の式は、普通のニュートン力学の力学的エネルギーです。p=mvなので、第一項は(1/2)mv2と同じこと。Vはポテンシャルエネルギーです。波なので、
            ψ=A exp{2πi(x/λ-νt)}       (4)
    これに、(1)、(2)を代入してλとνをEとpで置き換えると、
            ψ=A exp{2πi(px/h-Et/h)}   (5)
    この(5)式をxとtで偏微分します。
            ∂ψ/∂x=(2πip/h)ψ
            ∂ψ/∂t=(-2πiE/h)ψ
    この2式をħ=h/2πを使って書き直して、
            -iħ∂ψ/∂x=pψ  (7)
            iħ∂ψ/∂t=Eψ   (8)
    また、(3)の両辺にψを作用させて、
            Eψ=(p2/2m)ψ+Vψ  (9)
    (9)式のEに(8)式を代入すると
            iħ∂ψ/∂t=(p2/2m)ψ+Vψ  (10)
    ところで、
            ∂2ψ/∂x2=(∂/∂x)( ∂ψ/∂x)=(∂/∂x)(pψ/i ħ)=(-p/ i ħ) ∂ψ/∂x=(-p/ iħ)2ψ=-(p2/ħ2
    すなわち、p2ψ=-ħ22ψ/∂x2だから、(10)式は、
            iħ∂ψ/∂t=(-ħ2/2m)ψ+Vψ   (11)
    これが求めるシュレジンガーの式です。
            iħ∂ψ/∂t=- ħ2/2m・ψ+Vψ   (11)
    ħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħħ

    12歳の少年が書いた 量子力学の教科書

    すごい本が出たものです。「入門書は易し過ぎ、専門書は難し過ぎ」ということを感じ、その間を埋める、入門書と専門書の架け橋になるような本があればいい…という想いを実現したのが本書だそう。数式を追いながら読めば理解が深まるのはもちろんですが、入門者の方がそこを飛ばして読んだとしても、「量子力学」に一歩迫ることのできる一冊です。 シュレディンガーやハイゼンベルグの考えも丁寧にハショラズに説明できる力は本物です。
     将棋では、藤井聡太四段の快進撃がニュースになりましたが、スポーツの世界を含めてどんどん若い世代が活躍していくことは楽しみですね。学校の勉強だけでは時代について行けなくなって来ているようですね。従来の教育や学習のあり方を抜本的に考える時期に来ているように思います。このことは我々定年後の勉強にも当てはまると思います。
            『12歳の少年が書いた量子力学の教科書』-近藤龍一;ベレ出版

    scienceの部屋

    数学の部屋

    目次    
    幾何学再入門 正四面体の重心と頂点のなす角度 ベクトル解析入門 部分積分と置換積分

    幾何学再入門

     幾何学と言えば、総ての学問の基礎というのが欧米での常識。我が国では最近あまり人気がない。化学のおける立体構造や鉱物の結晶学等、空間図形は結構ややこしい。本当はユークリッド幾何の初歩からやればよいのでしょうが、それはそのうちにKids Roomの方で展開したいと思ってます。

    正四面体の重心と頂点のなす角度

    正四面体  メタンCH4の立体構造は、真ん中に炭素、正四面体の4つの頂点に水素分子が結合。H―C―Hのなす角度は109.5度となっています。この角度は正四面体の基本的な性質で、化学の問題でなく、自分で計算できる必要があります(化学の教科書には書いていない)。この計算は高1レベルでしょうが、立体図形でもあり結構考えにくいと思います。
     まず、正四面体の重心をG、4つの頂点をA、B、C、Dとします。図を参考にしてください。下図は上の立体の展開図です。正三角形が4つ集まっています。3つのAが折り返しで一つになります。正三角形の一辺をaとします。

    さて、BCの中点をMとします。
    AM=DM=(√3/2)a
    Hを△BCDの重心とすると、DH=(2/3)DM=(2/3)×(√3/2)a=(√3/3)a
    AH=√(AD2-DH2)a=√(1-(√3/3)2)a=√6/3a
    ここで、重心Gは、AH上にあって、錐体(四面体)の重心であるから、AG:AH=3:4
    よって、AG=(3/4)AH=3/4×√6/3a=√6/4a=0.6123a=(1/1.633)a
    ここで、△MADを考えると、AG=DG
    求めたい角度∠AGD=θとして、余弦定理を適用する。
    2AG・DGcosθ=AG2+DG2-AD2
    2×(√6/4)a×(√6/4)a cosθ=(√6/4)2a2+(√6/4)2a2-a2
       ∴cosθ=-1/3
    ここからは、関数電卓の出番で、cos-1θ=arccosθ=1.9106 rad=109.47°として求めることが出来る。
    ここで、錐体の重心位置および体積の求め方をレビューする。
    錐体重心 錐体体積
    錐体(底面積S)と三角形(底辺b)の比較をしてみると良く似た関係がある。
    図形体積重心位置
    錐体(1/3)Sh(3/4)h
    三角形(1/2)bh(2/3)h
    錐体(底面積S)と三角形(底辺b)の比較をしてみると良く似た関係がある。

    数学の部屋 scienceの部屋

    inserted by FC2 system